

R. C. Johnson

Phil. Trans. R. Soc. Lond. A 1927 **226**, 157-230 doi: 10.1098/rsta.1927.0005

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

$\begin{bmatrix} 157 \end{bmatrix}$

V. The Structure and Origin of the Swan Band Spectrum of Carbon. By R. C. JOHNSON, M.A., Ph.D., Lecturer in Physics, Queen's University, Belfast. Communicated by Prof. T. R. MERTON, F.R.S.

(Received July 3, 1926-Read December 2, 1926.)

[Plate 4.]

CONTENTS.

		PAGE
1.	Historical Introduction	157
2.	Production of the Swan band spectrum	158
3.	Tabulation of the data .	159
4.	The evaluation of the Rotational Energy Functions	160
5.	The $\lambda~5165$ band $~$	163
6.	Graphical Method of determining Moment of Inertia	168
7.	Observations on other bands. The Staggering Effect	172
8.	An anomalous feature of arc development	175
9.	The fine structure multiplicity	176
10.	The vibrational states of the molecule	180
11.	The energy distribution amongst the vibrational and rotational states	182
12.	A new band system associated with the Swan bands	185
13.	The nature of the Swan band emitter	186
14.	Summary	190

I. Historical Introduction.

Since its discovery by W. Swan almost exactly seventy years ago, speculations as to the origin of this familiar band spectrum have been prolific in spectroscopic literature. A good summary of these opinions and the experimental data upon which they were founded is given by WATTS (1), writing in 1914. With the exception of one or two writers, the two opposing schools have favoured a Carbon molecule and a Hydrocarbon The latter school have for the most part specified in particular molecule, respectively. an acetylene molecule. Thus among a vast number of experimenters VAN DER WILLIGEN (1859), ATTFIELD (1862-1875), DIBBITS (1864), MORREN (1865), PLUCKER and HITTORF (1865), Huggins (1868), Wüllner (1872), Salet (1873), Secchi (1873), Ciamician (1880), DESLANDRES (1888), and EDER (1890), favoured a carbon molecule (presumably C₂). On the other hand Swan (1856), Angström and Thalen (1875), Liveing and The latter writers conducted DEWAR (1880), and many others favoured a hydrocarbon. a great deal of careful research (2) on the flames of Carbon compounds, the vacuum tube spectra of Carbon gases, and the Carbon arc in various gases, and they affirm that the emitter is an acetylene molecule, since this gas can be withdrawn from the flames of VOL. CCXXVI.-A 640. [Published January 25, 1927. \mathbf{Z}

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character.

burning hydrocarbons which show the bands well. In the light of our present knowledge one or two comments are suggested as we review all this work. It is clear that in the vast quantity of experimental work of the former school the extraordinary difficulty of ensuring the complete absence of Hydrogen—either occluded in the carbons or present as water vapour—was not appreciated. We have, for example, a similar and comparatively recent controversy (3) with reference to the origin of the Nitrogen afterglow, in which the degree of freedom from Oxygen of a sample of Nitrogen was the point at issue.

Another very natural idea which prevailed until recently was that the emitters of band spectra were necessarily molecules known to chemistry, the most stable ones being those most likely to radiate under discharge conditions. Our present views are almost the reverse of these, and it seems probable that polar molecules cannot radiate band spectra An excellent paper representative of these views has recently been published at all. by MULLIKEN (4)—" On a class of one-valence electron emitters." The old ideas, therefore, which led to the choice of an acetylene molecule as the radiator of the Swan bands were certainly ill-founded, but by a coincidence it happens that a C_2H_2 molecule must now be quite definitely accepted as their emitter. The present paper contains the evidence for this statement. Hitherto measurements of the fine structure of only three heads have been available, and these from photographs take under arc conditions. It has been found desirable to make a complete re-measurement of the fine structure of these and other heads under new low temperature conditions of production. Some 2,000 lines are tabulated. A considerable number of these have been given series assignment, and the modern quantum theory of band spectra in its various aspects has been applied to the data. The scope of the resulting analysis may be gauged from the table of contents.

II. Production of the Swan band spectrum.

A large variety of conditions and methods yield this spectrum, many of which are of some experimental interest, and it is thought desirable to tabulate some of them :----

- (1) Flames. Most flames containing burning hydrocarbons, in particular the ordinary Bunsen flame.
- (2) The Carbon arc in Hydrogen (1-10 mm. gives best results), also the Carbon arc in most imperfectly dried gases.
- (3) Vacuum tubes containing low pressure Carbon gases (together with a trace of Hydrogen), especially when a condensed discharge is used.
- (4) A spark between poles of Carbon in Hydrogen. The Swan bands increase in brilliance up to a gas pressure of about 10 atmospheres.
- (5) The Carbon arc under water and other liquids—*e.g.*, glycerine and pure hydrocarbons.
- (6) The uncondensed spark in alcohol, glycerine, etc.
- (7) Vacuum tubes containing traces of Carbon gases, and filled with 20–50 mm. of one of the inert gases.

159

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

The sources of the spectrum used by the writer were (2) and (7). The Carbon arc burning in a stream of Hydrogen at a low pressure yields the bands brilliantly, and this method was used to photograph the 5165 and 4737 bands. It presents a certain characteristic development of the structure which will be discussed later. The greater part of the experimental work was done with a tube of the "H" pattern, having a capillary about 20 cm. long and 1 mm. diameter, and fitted with Carbon electrodes, side bulbs containing KOH and P_2O_5 , and a Palladium regulator. This was filled with pure Argon at about 30 mm. pressure, and the tube was excited by an A.C. generator supplying a high tension transformer having an output of 500 watts at 10,000 volts from the secondary. When the tube is in the right condition this yields a green light of exceptional brilliance, of which the spectrum is that of the Swan bands and the 4315 CH bands. This production of the Swan bands with great brilliance in high pressure Argon is of considerable interest both in itself and in the evidence it affords of the emitter of these bands (5). If the tube is excited by a mild discharge for a considerable time with the regulator heated so as to remove all Hydrogen, a stage is ultimately reached when the tube " cleans up," and only the continuous spectrum of high pressure Argon and a few lines of the red line spectrum are visible. If Hydrogen is then admitted through the regulator the Swan bands at once re-appear with great brilliance, continual introduction of Hydrogen eventually replacing them by the "Triplet System" (6). This points strongly to some hydrocarbon molecule as the emitter of the Swan bands, and to a hydrocarbon molecule of greater Hydrogen content as emitter of the "Triplet system." These processes are all reversible by removal of the Hydrogen. Similar effects are obtained if, instead of admitting H_2 , a small bulb containing KMnO₄ is attached to the tube and gently heated to introduce a little Oxygen. Both the Swan bands and the Triplet system can be produced, which only serves to indicate the production of a certain amount of Hydrogen in this case also.

III. Tabulation of the Data.

Photographs of excellent quality were obtained of the sequences $\lambda 4380$, $\lambda 4737$, $\lambda 5165$, and $\lambda 5635$ in the second order of a 21-foot concave grating having a dispersion of $1\cdot 3$ Å per mm. The 6191 sequence in the orange was photographed satisfactorily in the first order, as was also the 6857 sequence, with sufficient strength to yield measurements of most of the heads. Wellington anti-screen plates were used in the blue region, and Ilford extra-rapid panchromatic plates for the rest of the spectrum, excepting the $\lambda 5635$ group, which was photographed on Marion iso-record plates. Tables I, II, III and IV give detail of all the fine structure of the $\lambda\lambda 5165$, 4737, 5635 and 6191 groups observed on these plates, together with the additional structure in the case of the $\lambda\lambda 5165$ and 4737 bands obtained from arc photographs. The heads only have been measured in the 4380 " group of three," and in the red group. There is no doubt that the former group constitutes a part of the Swan spectrum, representing, in fact, the vibrational transitions (2, 0), (3, 1), and (4, 2); but the complexity of its fine structure, which

appears different from that of the other bands, will necessitate a third or fourth order photograph before it can be analysed. The quality of the definition obtained makes it probable that the relative values of the wave-lengths recorded in Tables I, II and III may be relied on to about 0.002 Å.U., and those of Table IV to about 0.005 Å.U. The absolute values were obtained from measurements of a number of plates, and are probably correct to 0.01 Å.U., excepting for the heads of the red group, for which the error may average 0.02 Å.U. Tables V and VI give the wave-lengths of the heads of the violet and the red groups.

The only other fine structure measurements of Swan bands are those by KOMP(7)of the 5635 head, HINDRICHS (8) of the 4737 head, and LEINEN (9) of the 5165 head, the data of which were presumably obtained from arc photographs. As already mentioned, the fine structure of the bands is in this case strikingly different in appearance from that of vacuum tube production---the former produces, in fact, a high temperature and the latter a characteristically low temperature distribution of energy among the rotational states. The difference in appearance, together with other peculiarities, originally suggested to the writer that two distinct systems were involved in each band, each consisting of a P and an R branch. These were called the "Tail" system and the "Head" system, and were investigated extensively as such (vide Section V). There are no Q branches present. Under arc conditions the fine structure of both systems is remarkably developed—e.g., in the 5165 head (see Plate 4 Nos. 4 and 5) the "Head" triplets, which almost fade out at 10 or 12 Å.U. from the head, are developed in the arc to at least 120 Å.U. Long exposures would probably make it possible to double this extension. On the other hand, the "Tail" triplets--which are a very conspicuous feature in the tube photographs, being developed from about the point where the "Head" system fades away—are comparatively faint in the arc until we proceed much further outwards; but the subsequent development is very prolonged. These features are clearly seen in the 5165 band, since the intensity falls off rapidly in the $\Delta n = 0$ sequence, and therefore the succeeding heads at $\lambda\lambda$ 5129, 5097, etc., do not obscure the effect.

Subsequently it was found that the idea of two systems was untenable, and the so-called "Tail" system is to be regarded as an R branch, the "Head" system being a P branch.

In the Tables subscripts 1, 2 and 3 are used to denote the less refrangible, the middle and the more refrangible members of a triplet. The successive band heads of the same group are differentiated by accents—*e.g.*, in the group corresponding to $\Delta n = 0$, P(m), R(m) apply to the (0, 0) band; P'(m), R'(m) to the (1, 1) band; P''(m), R''(m) to the (2, 2) band, etc.

IV. Evaluation of the Rotational Energy Functions.

As the succeeding analysis of the fine structure data depends upon this evaluation, the details of the method will be presented here. A slight departure from the usual procedure has been adopted, and formulæ have been developed which, it is thought, present some advantages.

If F and f are used for the initial and final rotational functions, then typical lines in the positive and negative branches of a band which results from the vibrational transition $(n' \rightarrow n'')$ are given by

$$\begin{array}{l} \mathrm{R} (j) = \mathrm{F}(n', j - \varepsilon + 1) - f(n'', j - \varepsilon) \\ \mathrm{P}(j) = \mathrm{F}(n', j - \varepsilon) - f(n'', j - \varepsilon + 1) \end{array} \right\} \quad . \quad . \quad . \quad (1)$$

where j is a quantum number assumed always integral and characterising the total angular momentum of the molecule. $j = m + \varepsilon$, where m = angular momentum of the nuclei, and $\varepsilon =$ component of electronic angular momentum about the axis of rotation (usually it is close to $\frac{1}{2}$). Rotational transitions are characterised by $\Delta j = \pm 1$, 0, but not necessarily by $\Delta m = \pm 1$, 0, since ε may change slightly in the transition. From equations (1) it follows that

$$\begin{array}{l} \operatorname{R}\left(j+1\right) - \operatorname{P}\left(j\right) = \operatorname{F}\left(n', j-\varepsilon+2\right) - \operatorname{F}\left(n', j-\varepsilon\right) \\ \operatorname{R}\left(j\right) - \operatorname{P}\left(j+1\right) = f\left(n'', j-\varepsilon+2\right) - f\left(n'', j-\varepsilon\right) \end{array} \right\} \quad . \quad . \quad (2)$$

which are the two combination principles to be satisfied by bands having the same initial and the same final vibrational quantum numbers respectively. From equations (2) we can also determine separately the forms of the initial and final rotational energy functions.

Having located the origins of the various bands, which should be such as to satisfy these combination principles, the assignment of rotational quantum numbers can be made, giving the values j = 1 to the lines on either side of the origin (so that they correspond to transitions of j from $2 \rightarrow 1$ and $1 \rightarrow 2$). This usually means transitions of "m" approximating to $1\frac{1}{2} \rightarrow \frac{1}{2}$ and $\frac{1}{2} \rightarrow 1\frac{1}{2}$, though not necessarily exactly this.

Forming the quantities R(j+1) - P(j), (= ν' say), for all the observed values of j, we then obtain a formula to fit them. In the following work we assumed

$$\nu' = \alpha + \beta j + \gamma j^2 + \delta j^3$$
 (3)

and obtained the values of α , β , γ and δ by the method of least squares. This involves solving the four normal equations :—

$$\Sigma \nu' = \Sigma \alpha + \beta \Sigma j + \gamma \Sigma j^{2} + \delta \Sigma j^{3}$$

$$\Sigma j \nu' = \alpha \Sigma j + \beta \Sigma j^{2} + \gamma \Sigma j^{3} + \delta \Sigma j^{4}$$

$$\Sigma j^{2} \nu' = \alpha \Sigma j^{2} + \beta \Sigma j^{3} + \gamma \Sigma j^{4} + \delta \Sigma j^{5}$$

$$\Sigma j^{3} \nu' = \alpha \Sigma j^{3} + \beta \Sigma j^{4} + \gamma \Sigma j^{5} + \delta \Sigma j^{6}$$
(4)

The evaluation of these is facilitated by using formulæ for the sums of the powers of the natural numbers, viz.—-

$$\begin{split} & \sum_{1}^{j} j = \frac{j(j+1)}{2}, \qquad \sum_{1}^{j} j^{2} = \frac{j(j+1)(2j+1)}{6}, \qquad \sum_{1}^{j} j^{3} = \left[\frac{j(j+1)}{2}\right]^{2} \\ & \sum_{1}^{j} j^{4} = \frac{j(j+1)(2j+1)(3j^{2}+3j-1)}{30}, \qquad \sum_{1}^{j} j^{5} = \frac{j^{2}(j+1)^{2}(2j^{2}+2j-1)}{12} \\ & \sum_{1}^{j} j^{6} = \frac{j(j+1)(2j+1)}{42} [3j^{4}+6j^{3}-3j+1] \end{split}$$

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS SOCIETY

We are then faced with the solution of finite difference equations of the type

which give us at once by finite integration the initial and final rotational functions. Thus

$$u_{x+2} - u_x = [(1 + \Delta)^2 - 1] u_x = [\Delta^2 + 2\Delta] u_x.$$

To obtain u_x we have to operate on the right hand side of equation (5) with

$$\frac{1}{\Delta^2 + 2\Delta} = \frac{1}{2\Delta} \left(1 + \frac{1}{2}\Delta \right)^{-1} = \frac{1}{2} \left\{ \frac{1}{\Delta} - \frac{1}{2} + \frac{\Delta}{4} - \frac{\Delta^2}{8} + \frac{\Delta^3}{16} \dots \right\}^*.$$

Expressed as a series of factorials the integrand is

$$lpha+\left(lpha+eta+\gamma+\delta
ight)x^{(1)}+\left(\gamma+3\delta
ight)x^{(2)}+\delta x^{(3)},$$

so that finally we have after operating

$$u_{x} = \frac{1}{8}\delta x^{(4)} + \left(\frac{1}{6}\gamma + \frac{1}{4}\delta\right)x^{(3)} + \left(\frac{1}{4}\beta - \frac{1}{8}\delta\right)x^{(2)} + \left(\frac{1}{2}\alpha - \frac{1}{4}\beta + \frac{1}{8}\delta\right)x^{(1)} + \left(-\frac{1}{4}\alpha + \frac{1}{8}\beta - \frac{1}{16}\delta\right)$$

= $\frac{1}{8}\delta x^{4} + \left(\frac{1}{6}\gamma - \frac{1}{2}\delta\right)x^{3} + \left(\frac{1}{4}\beta - \frac{1}{2}\gamma + \frac{1}{2}\delta\right)x^{2} + \left(\frac{1}{2}\alpha - \frac{1}{2}\beta + \frac{1}{3}\gamma\right)x - \frac{1}{4}\alpha + \frac{1}{8}\beta - \frac{1}{16}\delta.$ (6)

To this should be added the complementary function, which in this case is given by $(E^2-1)u_x = 0$ —*i.e.*, $a(1)^x + b(-1)^x = C$, an absolute constant. The value of F(n', j-z) can therefore be at once written down, since the coefficients of equation (6) can be found from α , β , γ , δ of equation (3). The same process applies to $f(n'', j-\varepsilon)$.

The theory of band spectra developed by KRATZER (10) and others indicates that

$$F(j-\varepsilon) = A'(j-\varepsilon)^2 + B'(j-\varepsilon)^4$$

$$f(j-\varepsilon) = A''(j-\varepsilon)^2 + B''(j-\varepsilon)^4$$

$$(7)$$

where $A = \frac{h}{8\pi^2 I'c}$, etc., and $B = -\frac{4A^3}{\omega_n^2}$ where $\omega_n =$ "frequency" of nuclear vibrations when the molecule has n vibrational quanta (B, A and ω are all in wave-number units). Comparing coefficients of equations (6) and (7), we can determine the values of A, B and ε , and thus secure fundamental information about the emitting molecule.

Thus

$$A + 6\varepsilon^2 B = \frac{1}{4}\beta - \frac{1}{2}\gamma + \frac{1}{2}\delta \qquad (10)$$

$$-2\varepsilon (\mathbf{A} + 2\varepsilon^2 \mathbf{B}) = \frac{1}{2}\alpha - \frac{1}{2}\beta + \frac{1}{3}\gamma. \quad . \quad . \quad . \quad . \quad . \quad . \quad (11)$$

* I am indebted to Prof. W. B. MORTON for pointing out this convenient method to me.

In practice equations (9), (10) and (11) were used for the determination of A, B and ε . The value of B from equation (8) was not usually in agreement, and is probably less reliable, since the term is very small and more likely to be vitiated by errors arising from the neglect of $C(j - \varepsilon)^6 \dots$, etc., in equation (7).

V. The λ 5165 Band.

The data associated with this band are recorded in Table I. In this case the prolonged development of the fine structure under arc conditions is very suitable for measurement and analysis, as it is but little confused by subsequent heads of the group. The band is typical in its structure of all the bands of the system, and it will therefore be considered in detail. More particularly it is of interest as being the radiation from the molecule in its vibrationless state.

Upon examining the list of wave numbers of, for example, the first members of the "Head" Triplets it will be observed that their first differences appear to go in pairs of approximately equal value, and the second differences as a consequence oscillate from a small value, say 0 or 0.1 up to 0.4 or 0.5 This feature becomes more pronounced as we recede from the head, and it is very evident if we examine the mean of the second and third members (the mean being taken since these components merge at a comparatively small distance outwards). The same characteristic is found in the "Tail" Triplets. The phenomenon is illustrated by the example given in Table VII, which is selected from a list of second members of the Tail system.

$\begin{array}{c ccccc} 0.463\cdot 38 & & & & & \\ 470\cdot 79 & & & & & \\ 478\cdot 31 & & & & \\ 486\cdot 25 & & & & \\ 486\cdot 25 & & & & \\ 494\cdot 25 & & & & \\ 502\cdot 71 & & & & \\ 8\cdot 35 \end{array}$	(0.46) (-0.09)	$511 \cdot 06$ $519 \cdot 99$ $528 \cdot 88$ $538 \cdot 30$ $547 \cdot 65$	$8 \cdot 93$ $8 \cdot 89$ $9 \cdot 42$ $9 \cdot 35$	(0.58) (-0.04) (0.53) (-0.07)	
---	-------------------	--	--	-------------------------------	--

Т	ABLE	VII.

Two courses are now open to us :---

- (1) We may either interpret this as some unusual staggering or displacement of alternate lines, in which case the whole "Tail" system would constitute an R branch, and the "Head" system the P branch of the band; or
- (2) We may break up the members into two series, which are naturally interpreted as P and R series. In the latter case the "Tail" and "Head" systems are complete partial bands each consisting of a P and R branch. Partial bands of this kind, which are closely related together, are familiar in the Helium band spectrum.

163

164

R. C. JOHNSON ON THE STRUCTURE AND

The latter alternative was at first adopted, and a considerable amount of analysis made on this basis. Subsequently it was abandoned, and the first alternative is regarded as the correct one. Before going into the details of this it has been thought well to give the substance of the results found by exploring the second hypothesis. For this purpose the old terms "Head" and "Tail" system are used for convenience. A characteristic difference between the Head and Tail systems is the headless character of the latter. Though an unusual feature, this would not be impossible of explanation with the zero line close to the head, and a somewhat gradual rise of intensity outwards. It is, however, only one of several anomalies associated with the spectrum. It was at first hoped that one system might be interpreted as two Q branches (a normal and a displaced one) associated with the other system, but this is clearly seen to be impossible, as the extrapolation to the head of the one is nowhere near the zero line of the other. The chief advantage of exploring the second alternative lies, however, in the natural explanation it affords of the staggering of alternate members. An examination of the "Head" system on this basis at once led to difficulties. A careful search through the head failed to reveal any gap or well defined intensity distribution such as usually points to the position of the null line. There is a somewhat questionable minimum of intensity at the 5161.7 triplet (see Table I, $\nu = 19368.1$), and if we are prepared to make the doubtful assumption that under some circumstances the zero-line may not be actually absent, but only weak, we may derive plausible molecular constants by taking the above as zero-line. If this is the zero-line, then by application of the combination principles of equation (2) it should be possible to locate the zero-lines of the heads λ 5635 and λ 4737, since these have, respectively, the same initial and the same final states as λ 5165. If we choose the triplet at $\nu = \frac{17750 \cdot 53}{17751 \cdot 24}$ in the λ 5635 band, this gives tolerably good agreement of R(j+1) - P(j) for small values of j. There is no line in the 4737 band which is a satisfactory choice: the triplet at $\frac{21117 \cdot 80}{21118 \cdot 11}$ is the nearest approach. In any case, there is no evidence of any intensity distribution about these lines for either the 5635 or 4737 bands. Further, no other line in the 5165 band may be chosen as zero line which will give any better agreement when the combination principle is applied to this and the other bands. All the evidence, therefore, points to the abandonment of these suggestions. Before doing this, however, a number of extensive calculations were made on the data of the 5165 "head" system, after the plan suggested in Section IV. Owing to the rapid approach of the second and third components of the triplets, the mean of these was used. Least squares' values of the constants α , β , γ and δ were found for the first and the second and third members for both the initial and final states. The final results were :--

Initial State—

First Members ... $F(m) = 2 \cdot 69636 (j - 0 \cdot 49157)^2 - 0 \cdot 003035 (j - 0 \cdot 49157)^4$ Second and Third Members $F(m) = 2 \cdot 68351 (j - 0 \cdot 48742)^2 - 0 \cdot 003688 (j - 0 \cdot 48742)^4$

Final State—

First Members	$f(m) = 2 \cdot 22671 (j - 0 \cdot 49517)^2 - 0 \cdot 003119 (j - 0 \cdot 49517)^4$
Second and	
Third Members	$f(m) = 2 \cdot 21730 (j - 0 \cdot 49935)^2 - 0 \cdot 003105 (j - 0 \cdot 49935)^4.$

From these we should have for the initial and final values of the moment of inertia (by equation 7) 10.266×10^{-40} and 10.316×10^{-40} initially, and 12.432×10^{-40} and 12.485×10^{-40} finally. The internuclear distance (d) may be calculated from these, since for a diatomic molecule consisting of two nuclei, masses m_1 and m_2 , at a distance "d" apart:

$$I = \frac{m_1 m_2}{m_1 + m_2} \cdot d^2.$$

The above data give 0.978 and 0.981 Å.U. initially, and 1.077 and 1.079 Å.U. finally, if we assume that the molecule consists of two nuclei, each of mass 13 times that of the H atom. This would be an approximation to an HC-CH molecule, but discussion of this is reserved for a later section. The above values of "d" are possible, but somewhat lower than might be expected from such a molecule. The moments of inertia were derived by a graphical method (see Section VI) for the "head" system in the case of six bands, and for the "tail" system in the case of twelve bands; but no useful purpose would be served by presenting the now discarded data. Under the same general hypothesis of two partial bands-viz., the "Head" and "Tail" systems-a further possibility was explored, and it is perhaps worth mentioning. Examination of the "Head" system of the 5165 band showed that one triplet at about λ 5127 ($\nu = 19197$) was absent. Plate 4 No. 4 shows this position marked as P (49). There was no triplet absent in the other branch of the system, so that its interpretation as due to a perturbation seemed impossible. Assuming this to be the null line of the band, an assignment of quantum numbers and a detailed analysis was then made. As before, least squares' solutions of α , β , γ and δ were obtained, and the rotational terms were found to be :---

Initial—

First Members... $F(m) = 8 \cdot 52557 (j - 0 \cdot 50036)^2 - 0 \cdot 003633 (j - 0 \cdot 50036)^4$ SecondandThird Members $F(m) = 8 \cdot 52517 (j - 0 \cdot 49014)^2 - 0 \cdot 001159 (j - 0 \cdot 49014)^4$ Final--First Members... $f(m) = 7 \cdot 98405 (j - 0 \cdot 48437)^2 - 0 \cdot 006017 (j - 0 \cdot 48437)^4$ Secondand

Third Members $j(m) = 8.03329 (j - 0.49217)^2 - 0.002883 (j - 0.49217)^4$

In the final rotational terms the constant 8.033 is probably more reliable than 7.984, since the R (j) - P(j+1) data of the latter included a number of doubtful figures.

For the initial moment of inertia we have $h/8\pi^2 I'c = 8.52537$, or $I' = 3.2470 \times 10^{-40}$. Assuming a CH molecule, this gives $d = 1.460 \times 10^{-8}$ cm., whereas assuming a C_2H_2 VOL. CCXXVI.—A. 2 A

molecule (say two nuclei of mass 13), $d = 0.55 \times 10^{-8}$ cm. The former value of d is quite reasonable for such a molecule, the latter is impossible. Assuming a CH molecule, the final moment of inertia is $I'' = 3.4459 \times 10^{-40}$, giving $d = 1.504 \times 10^{-8}$ cm. There is thus an increase of some 6 per cent. in I during the electron transition. The closeness of ε to $\frac{1}{2}$ in all four equations is very notable. While the values of A are probably reliable, the coefficient B (of the fourth-power term) is subject to a considerable percentage error owing to its inherent smallness. Hence, upon forming

$$R(j) - [F(j+1) - f(j)]$$
 and $P(j) - [F(j) - f(j+1)]$,

which should be constant—there is found a considerable falling off for increasing values of j. The theoretical values of B (see equation 7), viz., 0.00079176 (initial) and 0.00078366 (final) were tested, and also the effect of adopting $\varepsilon = \frac{1}{2}$ exactly, but no satisfactory fit was found in any case.

The assumption of partial bands is therefore finally abandoned, and the so-called "Tail" system is to be regarded as the positive branch and the "Head" system as the negative branch of a normally developed band. The staggering of the alternate members of the branches will be discussed later (vide Section VII). We now have an intensity distribution of the normal type, which serves as a guide to the location of the null line. We also have an exact criterion, since in the R branch there is a missing triplet at λ 5049 ($\nu = 19800$), and this may be naturally connected with that which was missing in the P branch at λ 5127. These two triplets will therefore have a common rotational state, which for some reason is rendered unstable. It may be either an initial or final state which they have in common, though the initial state (being the excited state) would a priori seem more probable. By extrapolation of the P branch round the head and towards the zero line (in which region its members are not measurable), it was found that there were 95 members between these two gaps. These correspond to j-transitions of $49 \rightarrow 48$ and $49 \rightarrow 50$, and indicate a disturbance of the initial state 49. The complete assignment is given in Table I. By application of the combination principle the assignment of j-values was then made to the 5635 and 4737 heads, and afterwards to most of the other principal heads. Some ten heads have been completely classified in this way, and one partially so. The full detail is found in Tables I, II, III and IV. Owing to the crowding of lines near the head, and the additional complications of the triplet structure, it was impossible to obtain reliable measurements of the P branch below about P(18). In the formation of the combination differences of equation (2) the accurate measurements of R(2) to R(18) are therefore unfortunately not utilised.

In bands in which the branches fade out at about j = 30, this involves neglecting some of the most accurate data. It would not at first sight appear to be a serious feature in the λ 5165 band, and accordingly a least squares' treatment of the data of Table VIII was made. This gave, however, very improbable values for A and ε , and it was therefore abandoned in favour of a graphical method. It is perhaps not surprising that an extrapolation from j = 18 to 0—which is really what is asked from the formula—should prove

166

TABLE VIII.

		$\frac{1 \text{ State}}{1 - P(j)}.$	$rac{\mathrm{Final}}{\mathrm{R}~(j)-1}$	$\frac{\text{State}}{P(j+1)}.$
j.	1st Members.	2nd and 3rd Members.	1st Members.	2nd and 3rd Members.
18			113.05	$113 \cdot 52$
19	$128 \cdot 58$	$128 \cdot 92$	$119 \cdot 46$	$119 \cdot 93$
20	$135 \cdot 43$	$135 \cdot 81$	$126 \cdot 07$	$126 \cdot 40$
21	$142 \cdot 48$	$142 \cdot 78$	$132 \cdot 40$	$132 \cdot 77$
22	$149 \cdot 29$	$149 \cdot 56$	$138 \cdot 95$	$139 \cdot 26$
23	$156 \cdot 33$	$156 \cdot 54$	$145 \cdot 51$	$145 \cdot 58$
$\overline{24}$	$163 \cdot 32$	$163 \cdot 36$	$151 \cdot 77$	$152 \cdot 05$
$\overline{25}$	170.10	170.33	158.08	$158 \cdot 40$
$\frac{1}{26}$	176.89	$177 \cdot 18$	$164 \cdot 63$	$164 \cdot 84$
$\overline{27}$	183.90	184.06	170.97	$171 \cdot 25$
28	190.65	190.84	$177 \cdot 44$	177.63
29	197.73	197.78	183.74	$183 \cdot 95$
30	$204 \cdot 41$	$204 \cdot 57$	$190 \cdot 29$	190.39
31	$211 \cdot 25$	$211 \cdot 49$	$196 \cdot 51$	$196 \cdot 65$
32	$218 \cdot 10$	218.19	$202 \cdot 83$	$203 \cdot 09$
33	$224 \cdot 98$	$225 \cdot 12$	$209 \cdot 23$	$209 \cdot 34$
34	$231 \cdot 71$	$231 \cdot 83$	$215 \cdot 60$	215.75
35	$238 \cdot 60$	$231 \cdot 05$ $238 \cdot 72$	$210 \ 00$ $221 \cdot 82$	$221 \cdot 99$
36	$245 \cdot 12$	$245 \cdot 37$	221 02 $228 \cdot 27$	$221 \ 0.0$ $228 \cdot 36$
37	$252 \cdot 12$	$252 \cdot 23$	$234 \cdot 37$	220 50 $234 \cdot 59$
38	$252 \cdot 15$ $258 \cdot 83$	$252 \cdot 25$ $258 \cdot 92$	234.31 240.82	234.03 240.94
39	$265 \cdot 64$	$265 \cdot 74$	240.02 247.02	$240^{\circ}54$ $247 \cdot 14$
40	203.04 272.26	$272 \cdot 32$	253.36	$253 \cdot 45$
40	$272 \cdot 20$ $279 \cdot 10$	$272 \cdot 32$ $279 \cdot 21$	259.53	259.60
42	$275 \cdot 10$ $285 \cdot 71$	$215 \cdot 21$ $285 \cdot 78$	$265 \cdot 83$	$265 \cdot 98$
43	$283 \cdot 11$ $292 \cdot 49$	$292 \cdot 58$	272.00	$203 \cdot 38$ $272 \cdot 08$
44	292.49 299.05	$292 \cdot 38$ $299 \cdot 12$	$272 \cdot 00$ $278 \cdot 28$	272.00 278.35
45	$305 \cdot 82$	$305 \cdot 87$	$210 \cdot 20$ $284 \cdot 38$	218.35 284.45
46	$305.82 \\ 312.40$	$312 \cdot 43$	290.66	290.74
47	012.40	312.49	290.00 296.76	296.14 296.81
48		205 60	290.10	290.01
48		$325 \cdot 69$		$309 \cdot 11$
49 50		990.07		
50 51		338.87		$315 \cdot 32$
51 52		345.63		$321 \cdot 33$
		352.04		327.59
$\begin{array}{c} 53\\54\end{array}$		358.70		$333 \cdot 49$
		$365 \cdot 10$		339.68
55 56		371.73		345.63
		378.09		351.78
57 58		384.72		357.69
58 59		391.03		$363 \cdot 82$
		397.65		369.66
60 61		$403 \cdot 87$		375.80
61 69		410.47		381.65
62		$416 \cdot 68$		387.72
63				392.51
64 65				$399 \cdot 41$
65				$405 \cdot 80$

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY Sciences

2 A 2

167

168

R. C. JOHNSON ON THE STRUCTURE AND

unreliable. In any case it seems likely that the total quantum number j involves a finite σ [$m = \{\sqrt{j^2 - \sigma^2} - \varepsilon\}$ the "Kramers-Pauli" (11) Term]. In this case equation (7) is replaced by

It is perhaps noteworthy that in connection with the second positive band spectrum of Nitrogen, with which a comparison will be made later, BIRGE (12) writes : "In the graphs (*i.e.*, the $\Delta F : m$ curves) for the two outer components of the triplets in the Nitrogen second group bands, this curvature (*i.e.*, corresponding to a finite σ and ε) is found in both the initial and final conditions."

If this is so in the case of the Swan bands, then the j^{-1} term of equation (12), which is negligible for large values of j, would become important near the origin.

The second order plates used for our measurements are excellent so far as they go, but it is clear that third or fourth order photographs on a 21-foot (or larger) grating are very desirable in order to secure accurate measurements of P(1) to P(18).

VI. Graphical Determination of Moment of Inertia.

It is perhaps well to be explicit about the detail of the graphical method of finding moments of inertia, in view of the slightly different general transition and notation used throughout the work. The method is due to BIRGE, and is described and applied by CURTIS (13) in his analysis of the Helium bands.

The general transitions adopted for the two branches have been :

(R) branch. $j + 1 \rightarrow j$ where j = 1, 2, 3, etc. j is the total quantum (P) branch. $j \rightarrow j + 1$ where j = 1, 2, 3, etc. [number.

The formulæ for typical lines R(j) and P(j) in the positive and negative branches are therefore

$$\mathbf{R}(j) = \mathbf{v}_0 + \frac{h}{8\pi^2 \mathbf{I}'} (j - \varepsilon + 1)^2 - \frac{h}{8\pi^2 \mathbf{I}''} (j - \varepsilon)^2$$

$$\mathbf{P}(j) = \mathbf{v}_0 + \frac{h}{8\pi^2 \mathbf{I}'} (j - \varepsilon)^2 - \frac{i}{8\pi^2 \mathbf{I}''} (j - \varepsilon + 1)^2$$

$$(13)$$

if for purposes of graphical construction we neglect the change in ε and the fourth power term during the electronic transition. These become—using one accent and two accents, respectively, for the initial and final states (see equation 7) :—

$$\begin{array}{l} \mathrm{R}\left(j\right) = \mathsf{v}_{0} + \mathrm{A}' - 2\mathrm{A}'\varepsilon + \mathrm{C}\varepsilon^{2} + 2j\left(\mathrm{A}' - \mathrm{C}\varepsilon\right) + \mathrm{C}j^{2} \\ \mathrm{P}\left(j\right) = \mathsf{v}_{0} - \mathrm{A}'' + 2\mathrm{A}''\varepsilon + \mathrm{C}\varepsilon^{2} - 2j\left(\mathrm{A}'' + \mathrm{C}\varepsilon\right) + \mathrm{C}j^{2} \end{array} \right\} \quad .$$
 (14)

where $A' = h/8\pi^2 I'$ (Initial), and $A'' = h/8\pi^2 I''$ (Final), and C = A' - A''. If $\varepsilon = \frac{1}{2}$, these simplify to :--

In the latter case we have the equations for the first differences :---

$$\begin{array}{l} \mathrm{R}(j) - \mathrm{R}(j-1) = (\mathrm{A}' + \mathrm{A}'') + \mathrm{C}(2j-1) \\ \mathrm{P}(j-1) - \mathrm{P}(j) = (\mathrm{A}' + \mathrm{A}'') - \mathrm{C}(2j-1) \end{array} \right\} \quad . \qquad . \qquad . \qquad (16)$$

At j = 1 these give, respectively, 2A' and 2A''. By plotting the data of equation (16) we may therefore determine A' and A'' graphically. From the graphical standpoint it is, however, an advantage to have the two branches collinear, and the two branches of equation (16) become so if we plot R (j) - R(j-1) at $(j-\frac{1}{2})$ and P (j-1) - P(j) at $(j-\frac{1}{2})$. The values of 2A' and 2A'' are then read off at $j = \frac{1}{2}$ in the two branches.

If, however, $\varepsilon \neq \frac{1}{2}$, then the difference equations are, from (14),

We see that at the values $j = (\frac{1}{2} + \varepsilon)$ these reduce to 2A' and 2A''. Equations (17) are not, however, collinear. They become so if we write $j' + \varepsilon$ for j, so that we must plot the quantity R (j) - R(j-1) at $(j - \varepsilon)$, etc., and the values [2A' and 2A''] are then found as before at $j = \frac{1}{2}$ on each side of the origin.

The above graphical method has been used on a large scale for all the bands analysed, and determines the moment of inertia within a probable error of $\frac{1}{2}$ per cent. At the same time, the value of C can be found very accurately from the graph, since $\Delta^2 R(j)$ $= \Delta^2 P(j) = 2C$ is the gradient of the straight lines obtained. In practice the graph of the first differences against j (as in equation 17) is extremely useful in determining the numbering of the lines in the first instance. For, assigning any arbitrary numbering consistent with the perturbations R(x), P(x + 1), and plotting the difference equations of (17) we have merely to displace the two branches symmetrically from the origin so as to be collinear in order to obtain the true value of x.

In theory it should, of course, be possible to determine the important constants A' and A'', B' and B'' by an analysis of one branch only, viz., the well developed R branch in this case. Assuming $\varepsilon = \frac{1}{2}$, then any line R (j) would be given by

Neglecting B' and B" this reduces to equation (15). An attempt was made to apply this to the well developed R branch of the λ 5165 head, but it was found that the "staggering" effect vitiated the results.

MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS SOCIETY

The graphically determined data—viz., the values of 2A', 2A'' and C—are given in Table IX, and these have been used to derive Table X, which gives values of I', I'', and d', d'', the corresponding values of the internuclear distance. The latter have been

			L.,			
n" n'	0.	⁻ 1.	2.	3.	4.	5.
0	${3 \cdot 41 3 \cdot 18 \ 0 \cdot 1151}$	$3 \cdot 41 3 \cdot 145 \\0 \cdot 132^*$	$3 \cdot 41 3 \cdot 12 \\ 0 \cdot 147$			
1	$3 \cdot 37 3 \cdot 18 \\ 0 \cdot 0985$	$3 \cdot 36 3 \cdot 14 \\ 0 \cdot 1125$	$3 \cdot 37 3 \cdot 12 \\ 0 \cdot 128^*$	$3 \cdot 37 3 \cdot 09 \\ 0 \cdot 144$		
2			$3 \cdot 34 3 \cdot 125 \\ 0 \cdot 107$	$3 \cdot 355 3 \cdot 11 \\ 0 \cdot 123$		
3					$ \begin{array}{r} 3 \cdot 34 & 3 \cdot 11 \\ 0 \cdot 116 \end{array} $	$\begin{array}{c} 3\cdot 37 3\cdot 10 \\ 0\cdot 133 \end{array}$

TABLE IX.—Values of $\begin{bmatrix} 2A' & 2A'' \\ C \end{bmatrix}$ (graphically).

Note.—The middle components of the triplets were used in deriving the above data. An * indicates that the mean of the 2nd and 3rd components was employed.

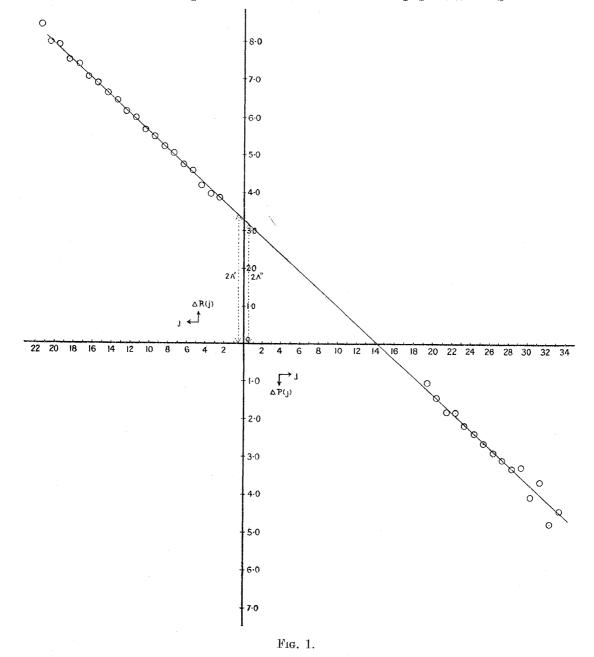

n" n'	0.	1.	2.	3.	4.	5.
0			$\begin{array}{rrrr} 16{\cdot}236 & 17{\cdot}745 \\ 1{\cdot}230 & 1{\cdot}287 \end{array}$			
1			$\begin{array}{rrrr} 16{\cdot}428 & 17{\cdot}745 \\ 1{\cdot}238 & 1{\cdot}287 \end{array}$			
2			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} 16{\cdot}502 & 17{\cdot}801 \\ 1{\cdot}241 & 1{\cdot}288 \end{array}$		
3					$\begin{array}{cccc} 16{\cdot}576 & 17{\cdot}801 \\ 1{\cdot}243 & 1{\cdot}288 \end{array}$	

TABLE X.—Values of I' and I'', also of d' and d''.

Note.—The units in which I is given are 10^{-40} grm.-cm. ; d the inter-nuclear distance is in Ångström Units.

deduced on the hypothesis of an HC-CH molecule, and are quite close to the similar values for molecules such as N_2 , CO, etc. A specific comparison of the details will be made later. It may perhaps be mentioned here that the assumption of a C_2 molecule *i.e.*, of two nuclei of mass 12—would give values of d about 0.05 Å.U. larger, but this is still of the right order of size. A distinction between these alternatives on the basis of a structure analysis alone is therefore impossible. Against a C_2 origin there is, however,

considerable experimental evidence (see Section XIII), and there are also theoretical considerations which make it highly improbable. Briefly, these are that a C_2 molecule would be of the inert gas type, and in accordance with our knowledge of these molecules it would not be expected to radiate. For instance, BN, which C_2 would resemble closely, is known to have no band spectra at all. (See MULLIKEN's paper (4)). Fig. 1 illustrates

the graphical method in its application to the λ 5165 head. It also shows clearly the staggering effect: it will be noted that successive points are on opposite sides of the line.

VII. Observations on other Bands.

Table XI illustrates the application of the combination principle to several of these bands. The heads 5165, 5635, 6191 all arise from the molecule in the same initial state n' = 0, while $\lambda\lambda$ 5165 and 4737 arise from the same final state n'' = 0. The agreement is quite good on the whole, and would probably be better still if the P branch was adequately resolved so that second members only could be used. In Table XI the

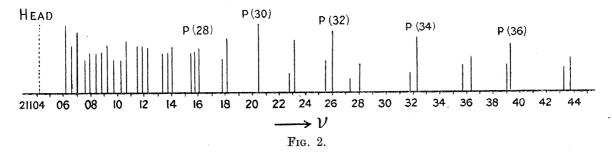
<i>j</i> .		$\frac{\text{Initial State}}{\text{R }(j+1)-\text{P }(j)}.$	$\frac{\text{Final State}}{\text{R }(j)-\text{P }(j+1)}.$		
<i>J</i> •	5165	5635	6191	5165	4737
17		115.08	115.00		
18		$122 \cdot 12$	$121 \cdot 85$	$113 \cdot 52$	
$\tilde{19}$	$128 \cdot 92$	129.06	$128 \cdot 91$	$119 \cdot 93$	
20	$135 \cdot 81$	$135 \cdot 78$	$135 \cdot 76$	$126 \cdot 40$	$126 \cdot 42$
21	142.78	$142 \cdot 82$	142.76	$132 \cdot 77$	$132 \cdot 78$
22	$149 \cdot 56$	$149 \cdot 51$	$149 \cdot 59$	$139 \cdot 26$	$139 \cdot 35$
23	$156 \cdot 54$	$156 \cdot 68$	$156 \cdot 57$	$145 \cdot 58$	$145 \cdot 62$
24	$163 \cdot 36$	$163 \cdot 51$	$163 \cdot 54$	$152 \cdot 05$	$152 \cdot 17$
25	170.33	$170 \cdot 34$		$158 \cdot 40$	$158 \cdot 43$
26	$177 \cdot 18$	$177 \cdot 15$		$164 \cdot 84$	$164 \cdot 92$
27	$184 \cdot 06$			$171 \cdot 25$	$171 \cdot 23$
28	190.84			$177 \cdot 63$	$177 \cdot 76$
29	$197 \cdot 78$			$183 \cdot 95$	$184 \cdot 07$
30	$204 \cdot 57$			$190 \cdot 39$	$190 \cdot 29$

TABLE X	1.
---------	----

figures apply to means of the second and third members. The agreement in the case of first members was examined, but it is not so good, owing probably to the law of widening of the triplet structure being different for the various bands.

The 4737 band exhibits some features of interest. The triplet structure of the P branch is in this case unusually clear and well-defined. The triplet separation, however, shows an unusual feature as we proceed outwards from the head : it grows gradually less, until at P (30) it has vanished. Beyond this point it resumes a measurable value, and afterwards again decreases normally. The great intensity of the single line P (30) strongly suggests a definite merging of all three components at this point. In the arc photograph there is, however, a faint line in about the correct position for the first component : this may possibly be genuine, or it may have an extraneous origin.

Another anomalous feature is revealed by a study of the wave-numbers (mean of the second and third components) of the P branch. Some of these are recorded with their first differences in Table XII. It will be noted that a definite but only slight staggering (and that of practically constant amount) takes place up to P(32). After this point


172

ATHEMATICAL, IYSICAL ENGINEERING

ν.	Δν.	$\Delta^2 \nu$.	ν.	Δν.	$\Delta^2 \nu.$
21106 •80	0.98		$21136 \cdot 37$	2.96	-1.12
$107 \cdot 78$	$1 \cdot 22$	+0.34	$139 \cdot 33$	4.38	$+1\cdot42$
$109 \cdot 00$		+0.23	$143 \cdot 71$		-0.82
$110 \cdot 45$	1.45	+0.13	$147 \cdot 27$	3.56	$+1 \cdot 32$
$112 \cdot 03$	1.58	+0.27	$152 \cdot 15$	4.88	-1.07
$113 \cdot 88$	1.85	+0.13	$155 \cdot 96$	3.81	+1.31
$115 \cdot 86$	1.98	+0.27	161.08	5.12	-0.82
$118 \cdot 11$	$2 \cdot 25$	$+0.13^{\circ}$	$165 \cdot 38$	4.30	$+1 \cdot 41$
$120 \cdot 49$	2.38	+0.34	171.09	5.71	0.96
$123 \cdot 21$	2.72	+0.09	$175 \cdot 84$	4.75	+1.12
$126 \cdot 02$	$2 \cdot 81$	-1.18	181.74	5.90	-0.86
$127 \cdot 65$	$1 \cdot 63$	$+3 \cdot 01$	186.78	5.04	+1.37
$132 \cdot 29$	$4 \cdot 64$	-0.56	$193 \cdot 19$	6.41	0.96
	4.08		$198 \cdot 64$	5.45	

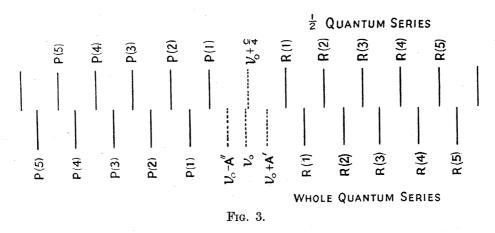
TABLE XII.

P (33) is violently perturbed—viz., by $1 \cdot 45$ units—and the subsequent staggering becomes very pronounced, the second differences oscillating between positive and negative values. A closer examination shows that the staggering occurs in the alternate members—viz., P (35), P (37), etc.—since P (32), P (34), P (36), etc., are in about the expected positions. The perturbation of position is accompanied by one of intensity. It will be noticed that the intensity of P(33) is abnormally low. Fig. 2 shows clearly the nature of the

perturbation and the staggering effect. The heights of the lines are drawn proportional to the estimated intensities. Presumably R(32) shows a similar perturbation, but this is not determinable from the data of the R branch, which fades out about this point. The

VOL. CCXXVI.-A.

2 B


MATHEMATICAL, PHYSICAL & ENGINEERING

TRANSACTIONS SOCIETY

cause of the staggering effect is quite obscure. It is suggested, however, that it may be related to the peculiar "staggering" of intensities which characterises a number of band spectra arising from symmetrical molecules—e.g., He_2 , N_2 , N_2^+ , etc. In connection with the latter phenomenon, DIEKE (14) has suggested the division of the bands into two series, which would necessarily involve reducing the moment of inertia of the molecule. BIRGE (15) has, however, urged weighty objections against this view. A recent suggestion of SLATER (16) is interesting in this connection. We have already considered DIEKE's alternative in relation to the Swan bands, but decided to abandon it. While the origin of both these phenomena is still very uncertain, it may well be that they are different manifestations of the same cause, more especially as we believe the emitter of the Swan bands to be a highly symmetrical one.

In the 4715 head (and the succeeding heads) the triplets of the R branch are not at all obvious, and this, together with the smaller dispersion of the grating in this position, and the overlapping structure of the fourth head, has made it very difficult to analyse. The assignment made of some 18 members of the R branch is therefore only tentative, and cannot be checked by the combination principle, since the P branch is a confused tangle of lines. There are some irregularities in the assignment made, but as given it accounts for most of the strong lines. Measurements made on good plates of still higher dispersion are desirable, and, in addition, further and more extensive measurements of the (3, 3), (3, 4) and (3, 5) bands (which have the same initial state) would be of value.

An Alternative Explanation of the Band Structure.—Before leaving the fine structure analysis of the bands, a further possibility may be worth mentioning. Adopting the general grouping of the lines already considered, we could avoid the phenomenon of staggering by considering the whole as made up of two systems superposed, and having very nearly, but not quite, the same origin (ν_0) . Alternate members in the two branches would then belong to the same P or R branch. If these were regarded as a whole quantum and a half quantum system superposed (as shown in fig. 3), arising, of course, from the

one molecule, it would account qualitatively for all the facts. Such systems, it is well known, extrapolate for j = 0 to v_0 and $v_0 + C/4$, respectively. This would correspond to

174

PHILOSOPHICAL TRANSACTIONS a displacement of about 0.03 frequency units at the origin. If $C = h/8\pi^2 (1/I' - 1/I'')$ is a function of m, as is to be expected, owing to the distension of the molecule by centrifugal force, then we may expect an increasing stagger or displacement of the two systems for large values of m. This is, in fact, the case, the staggering becoming as large as 0.6 units at j = 70 (it would be at j = 35 on this hypothesis).

If this view is correct, it should be possible to relate mathematically the triplet separation as a function of m, and the "staggering" as a function of m, for in Section IX we have also considered the former as originating in centrifugal deformation of the molecule.

A serious objection to breaking up the band structure into two bands governed by whole and half-quantum transitions is that the moments of inertia of the molecule will then have only half the values of Table X. In the case of the 5165 band, for example, we should then have for the internuclear distances 0.87×10^{-8} cm. initially, and 0.90×10^{-8} cm. finally, which are too small, as seen by comparison with the data of other similar molecules, for which d is about 1.2×10^{-8} cm.

VIII. An Anomalous Feature of Arc Development.

The development of the P branches of the different bands examined shows a notable difference, according as it is produced in the arc or in the tube. While the tube photographs show a normal development of triplets, the arc photographs show doublets only. This peculiarity of the arc photographs has also been observed by SHEA,* who regards the third component as missing. The phenomenon appears to be quite genuine, and not merely a question of inadequate resolving power. A close examination of the 4737 band, which shows an unusually good development of the P branch triplets on the tube plates, leads me to think that it is not merely an elimination of the third component which takes place in the arc, but rather an anomalous displacement of the central and third components together so that they are not resolved. Both the intensity and the position of the "doublet" appear to me to favour this. The matter would, however, be worth a further investigation with still higher dispersion and resolving power.

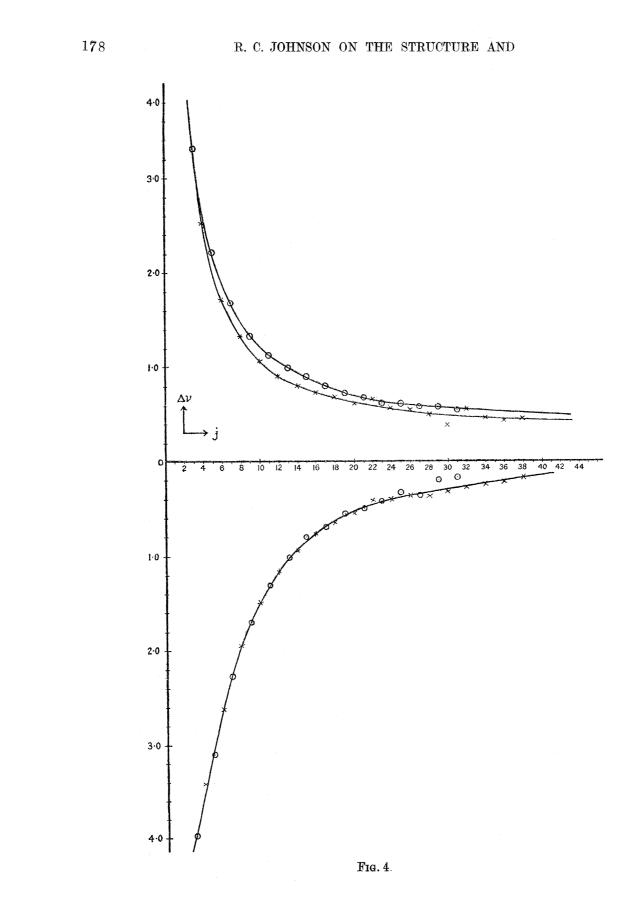
Anomalies of this kind are not unknown in band spectra, and they present a problem of considerable interest. For example, in the case of the Comet Tail bands due to CO^+ , the development by electron impact in low-pressure CO gas produces a P, Q and R branch together with a strong additional Q branch. This latter does not appear at all in the structure development when a trace of CO is contained in high pressure Helium (17). There is again a curious difference between the high temperature conditions of the arc and the low temperature conditions of active Nitrogen on the fine structure development of the β bands of BO (18). [In active Nitrogen they are singlet bands, while in the arc they are doublets of increasing separation outwards. The amount of separation appears to depend to a considerable extent upon the value of n''.] These bands are apparently anomalous in any case, and, according to MULLIKEN, consist of single positive branches.

It might be, however, that the "heads" are exactly coincident with a structure line in which case the P and R branches would superpose. If so, a high dispersion photograph should probably show the breaking up of the additional component into two members for large values of m, unless the zero line were extremely close to the head. It would be very interesting to examine the development of the violet CN bands in excess of Argon or in active Nitrogen.

A further interesting case is recorded by STEUBING and TOUSSAINT (19), who give some good micro-photometric curves showing the fine structure of the second positive Nitrogen bands. These are of particular interest in view of the probable similarity of the N_2 molecule in this state, and the HC-CH molecule when emitting Swan bands. The curves show the normal development of the triplet structure at low and high temperatures. The effect of temperature is simply to increase the value of j_{max} — while not differentiating between the components of a triplet. When a trace of nitrogen is mixed with excess of Helium-Neon mixture, and a condensed discharge passed, the fine structure is similar to that from a trace of Nitrogen in excess of Argon, excited by an uncondensed discharge, and both are different from the normal production. From being of approximately equal intensity under normal conditions, the graphs indicate that the triplet components become quite unequal. This phenomenon is different to that of the P branches of the Swan bands. It should be said, however, that these observations of STEUBING and TOUSSAINT were obviously made on the R branches of the second positive Nitrogen bands: the P branches were not adequately resolved for observation. It may be that somewhat similar intensity changes in the R branches of the Swan bands would be revealed by a microphotometer.

It is impossible to submit any wholly satisfactory explanation of the differences between arc conditions and the conditions in high pressure Argon until we understand more of the nature and causes of fine structure multiplicity. Some speculations in this connection are presented in the next section. The measure of similarity between conditions of production in high pressure Argon and in active Nitrogen may, however, be noted. The writer has drawn attention to this on several occasions (20). Probably the close similarity is due chiefly to the excitation being by means of collisions of the second kind with excited Argon atoms and excited Nitrogen molecules, respectively.

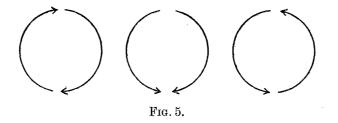
IX. The Fine Structure Multiplicity.


Bands have been classified by HEURLINGER on the basis of their fine structure as singlet, doublet and triplet bands. The singlet bands may consist of either single lines or doublets of increasing separation outwards (e.g., the BO bands in the arc, and the violet CN bands). Doublet and triplet bands have decreasing separation outwards, and, in addition, each component may show doublet separation of the first type. It is clear that the Swan bands are an example of the Heurlinger Triplet bands. KRATZER has explained the doublet bands by assuming that such molecules will have a resultant

electronic momentum, and that the molecule may rotate so that its own angular momentum is either in the same or in the opposite direction to this. It would then follow that while under arc conditions both directions of rotation were possible for the BO molecule, in active Nitrogen only one direction was possible. [A résumé of these and other facts is given by MULLIKEN in the papers already cited (4, 18).] The physical mechanism of this is, however, difficult to picture. BIRGE (12) has indicated several directions in which KRATZER's theory disagrees with experimental data in the case of the CN doublets. The calculated doublet width and symmetry of the separation both conflict with the experimental data.*

Curves have been drawn which exhibit the triplet separation as a function of the rotational quantum number. Fig. 4 shows the triplet widths of the 5165 band. Those for the 5635 and 4737 bands have been constructed, but are not reproduced here, as they exhibit precisely similar characteristics to those of fig. 4. The rapid separation of the components near the origin is very remarkable. The two intervals $w_{1,2}$ and $w_{2,3}$ between the first and second and the second and third components have been plotted positively and negatively. Such a curve as fig. 4 provides the essential data for a rigorous quantitative test of any theory of fine structure multiplicity. As no immediate purpose would appear to be served, the equations to these curves have not been found. They appear to the eye to approximate to hyperbolæ. The curve is for the R branch only; there is not sufficient data to plot the P branch separations. These appear, however, to be somewhat smaller than the R branch separations of the corresponding triplets (*i.e.*, of those having the same quantum numbers). It will be seen from fig. 4 that the two outer components behave differently, and they will therefore require different functions to represent their separation from the central (normal) one. It is impossible, within the limits of error, to choose any line parallel to the major axis so as to reflect the one curve into the other. The interval $w_{1,2}$ appears to assume a constant value for large values of j, and the interval $w_{2,3}$ appears to vanish at about j = 50. In reality, however, it may be that both approach zero asymptotically, but at vastly different A notable feature of the curves is that for the $w_{1,2}$ interval there is a staggering rates. of the alternate members; for the $w_{2,3}$ there is none. This has been indicated by constructing two curves through the alternate points in the former case.

With regard to the origin of the triplet structure of this type, it would seem possible to generalise the principle of Kratzer's explanation of the doublet bands, if we suppose that a two-valence electron emitter (such as the HC-CH molecule) may have its two electrons traversing their orbits in the same sense in some of the molecules, and in the opposite sense in others. There seems to be no *a priori* reason against the assumption, for, like the isotopes of elements, there would be no chemical means, and probably few physical means, of differentiating between the one type of C_2H_2 molecule and the other. [I have


^{*} Note added later: I understand that the above disagreement arose through an arithmetical error. KRATZER'S theory therefore provides quite a satisfactory explanation of the doublets.

TRANSACTIONS SOCIETY 1

PHILOSOPHICAL THE ROYAL MATHEMATICAL, TRANSACTIONS SOCIETY & MATHEMATICAL, e & ENGINEERING SCIENCES

not been able to find any data, but probably C_2H_2 is diamagnetic. Even if it is, I do not think that the above suggestion should give rise to any difficulty.] On the above hypothesis it would be possible to combine the resultant electronic momentum in the three cases of fig. 5 with the momentum of the rotating nuclei. Thus, if M represents

the angular momentum of the core, and A and B the momentum contributions of the two electron orbits, the possibilities are illustrated by :---

 $\begin{array}{c} \mathbf{M} + (\mathbf{A} + \mathbf{B})_m \\ \mathbf{M} - (\mathbf{A} + \mathbf{B})_m \\ \mathbf{M} + (\mathbf{A} - \mathbf{B})_m \\ \mathbf{M} - (\mathbf{A} - \mathbf{B})_m \end{array}$

which in general should yield a quartet. But if as here we may reasonably assume the two-valence electrons to move in *similar* orbits, we may put A = B, and we have the three cases— $M + 2A_m$, M, $M - 2A_m$ —which correspond to the triplet formation. (These formulæ are descriptive only, not quantitative.) The diminution in triplet separation with increasing rotational quantum number, indicates that the vector component of electronic momentum about the axis of rotation gradually falls off as *m* increases. (The dependence on m is indicated by the subscript.) This being so, the evaluation of ε as a function of m should be intimately related to the triplet separation as a function of m. This does not *necessarily* involve a change in the *resultant* electronic momentum, for σ may merely gain at the expense of z, through the orientation of the electronic orbits being altered. On the other hand, it seems possible that the resultant electronic momentum is changed, for probably a change of size as well as of orientation of the valence orbits will be a consequence of the inevitable attempt to counteract the distension of the molecule under centrifugal force. It may be noted that in order to counteract the centrifugal force both these changes would necessarily be in the direction which would diminish ε , viz., contraction as regards size and orientation of the orbital planes perpendicular to the line joining the nuclei. This factor therefore accounts for triplet separations decreasing as m increases. One significant feature which is difficult to explain even qualitatively is the asymmetry of the triplet separation, viz., that $w_1, z \rightarrow w_2$ constant = approximately 0.4 frequency units for large values of j, while $w_{2,3} \rightarrow 0$ at about j = 50. This would be explained if the molecular contribution typified by "M" was different according as its rotation was in the same or opposite sense to 2A.

Thus, if for one direction "M" was replaced by " $M + 2A_{j=50}$," we should then have the third component merging with the second at j = 50. We see this from fig. 4, since displacing the lower curve downwards by about 0.4 units would *roughly* restore symmetry. The above assumption, however, is difficult to account for physically, and doubtless there are other factors which will need consideration ultimately.

X. The Vibrational States of the Molecule.

The assignment of vibrational quantum numbers (n' for the initial and n'' for the final state) is given in Table XIII. The data presented are the observed wave-length of the head, the value of ν_0 as determined from experimental data, and the value calculated

	TABLE XIII.—Values of	$\begin{bmatrix} \lambda \text{ Head} \\ \nu_0 \text{ Obs.} \\ \nu_0 \text{ Calc.} \end{bmatrix}$	
1		L	

n" n'	0.	1.	2.	3.	4.	5.	6.	7.
0	$5165 \cdot 22$ 19373 \cdot 97 19373 \cdot 87	$5635 \cdot 53 \\ 17755 \cdot 66 \\ 17755 \cdot 66$	$6191 \cdot 21 \\ 16160 \cdot 78 \\ 16160 \cdot 79$	$14589 \cdot 26$	$13041 \cdot 07$	$11516 \cdot 22$	$10014 \cdot 71$	$8536 \cdot 54$
1	$\begin{array}{r} 4737 \cdot 08 \\ 21127 \cdot 81 \\ 21127 \cdot 94 \end{array}$	$5129 \cdot 34$ $19509 \cdot 73$ $19509 \cdot 73$	$5585 \cdot 49$ $17914 \cdot 86$ $17914 \cdot 86$	$6122 \cdot 07$ $16343 \cdot 27$ $16343 \cdot 33$	14795 • 14	$13270 \cdot 29$	11768.78	$10290 \cdot 61$
2	$4382 \cdot 48$ 22843 \cdot 31	$4715 \cdot 23$ $-$ $21225 \cdot 10$	$5097 \cdot 66$ $-$ $19630 \cdot 23$	5540.68 	$\begin{array}{c} 6059\cdot 68\\\\ 16510\cdot 51\end{array}$	$6677 \cdot 31$ $-$ $14985 \cdot 66$	$13484 \cdot 15$	$12005 \cdot 98$
3	24519.98	$4371 \cdot 43$ $22901 \cdot 77$	$4697 \cdot 60$ $21306 \cdot 90$	19735•37	$5501 \cdot 91$ 18187 \cdot 15 18187 \cdot 18	$\begin{array}{r} 6004 \cdot 88 \\ 16662 \cdot 47 \\ 16662 \cdot 33 \end{array}$	$ \begin{array}{r} 6599 \cdot 25 \\ - \\ 15160 \cdot 82 \end{array} $	$13682 \cdot 65$
4	26157.95	24539.74	$4365 \cdot 165$ 22944 · 87	$4684 \cdot 78$ $\overline{21373 \cdot 34}$	19825.15	$5470 \cdot 28$ $$	$5958 \cdot 7$ $16798 \cdot 79$	$\begin{array}{r} 6533 \cdot 68 \\ 15320 \cdot 62 \end{array}$
5	27757 · 22	26139·01	24544 · 14	22972·61	$4678 \cdot 59$ $21424 \cdot 42$	19899•57	18398.06	$5923 \cdot 42$ $$ $16919 \cdot 89$

Note.—The values of v_0 are for the middle components of the triplets.

from equation (19). Some difficulty was encountered in obtaining satisfactory values of v_0 for the different bands. It was due firstly to the complexity of the triplet structure, together with the distribution of intensity among the rotational states, which, as we have previously seen, has made accurate measurements of P(1) to P(17) impossible.

In the case of the Swan bands this is particularly unfortunate, as we have already mentioned that the rotational energy function probably contains a term in j^{-1} corresponding to a finite σ , and this assumes importance for small values of j. The staggering of the alternate lines is also a further cause of trouble. It is thought, however, that the following expression is a fairly good representation of the null lines (ν_0) :---

where n' ranges from 0 to 5 and n'' from 0 to 8. The final vibrational function is probably much more reliable than the initial function, as null lines could only be located for a short range of n'. This will be seen from Table XIII. The range of final vibrational states in band spectra is usually greater than that of the initial states, consequent upon the tendency of negative values of $\Delta n = n' - n''$ to preponderate. This is so in the above case (see also fig. 6). The frequency of nuclear vibrations is given by $\omega_n = \frac{1}{h} \frac{dE_n}{dn}$, so that these are respectively in the initial and final electronic states

$$\omega_{n'} = 1773 \cdot 42 - 38 \cdot 70n' \\ \omega_{n''} = 1629 \cdot 88 - 23 \cdot 34n''$$
 (20)

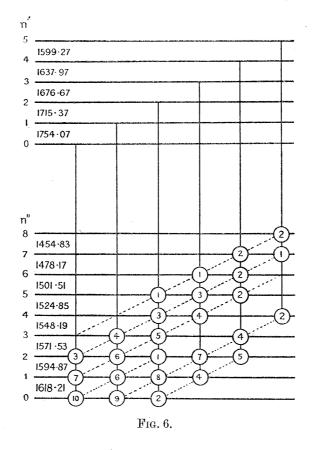
It will be noted that while the field of force between the nuclei is stronger in the initial (excited) state, it departs from a harmonic character more rapidly. Using the data for the final electronic state, we see that the molecule would be on the point of dissociation for n'' = 69, assuming that the linear relation between ω_n and n holds with sufficient accuracy. Substituting the calculated value $n'' = 69 \cdot 832$ in the final vibrational function we obtain for the corresponding vibrational energy 56908.89 wave-number units (=7.02 volts). Using the initial data, and making the same assumptions, we find dissociation at n' = 45.825, which gives upon substitution a vibrational energy of 40633.48 units. To this must be added the electronic energy 19373.87 units, giving $60007 \cdot 35$ units = 7 \cdot 41 volts. The value 7 \cdot 02 volts from the final data is probably more reliable. Expressed in heat units this is 161,640 calories. Unfortunately we do not know whether the final state of the Swan emitter is the ground level of the molecule (see, however, Section XIII, HORI'S work). If so, then the heat of dissociation of the molecule,* presumably into two CH groups, should be of the order 162,000 calories. Otherwise there will be an electronic term to add to this. As far as the writer is aware, there are no known band spectra which have electronic states in common with the Swan spectrum, and it is therefore impossible to deduce anything in this connection. Mostband spectra (21) which are produced in flames probably have the final electronic state as the normal one, but it is impossible to infer anything with certainty with reference to the Swan bands. If the spectrum does represent a transition from an excited to the normal

VOL. CCXXVI.-A.

^{*} The general theory has been worked out recently by BIRGE and SPONER in an interesting paper entitled "The Heat of Dissociation of Non-Polar Molecules" (not yet published). The writers discuss N_2 , NO, O_2 , and CO. I am indebted to them for a preliminary copy, which I would like gratefully to acknowledge here.

state, then the bands λ 5165, λ 4737, λ 4382 should appear in absorption in cold acetylene gas (since we believe a C₂H₂ molecule is the emitter). I have been unable to find any evidence of these at all. HENRI and LANDAU (22), however, record a large number of bands in the ultra-violet absorption spectrum of acetylene. I have made a close examination of these, but it is clear that they do not bear any relation to the Swan bands. We have, therefore, practically no knowledge of the electronic energy levels of the HC-CH molecule, except such as we may infer by a comparative study with similarly constituted molecules (see Section XIII).

Mutual Action between Rotation and Oscillation.—At this stage attention may perhaps be drawn to this feature, which is illustrated by the data of Table IX. According to theory, (23) an expression for the total energy of an excited molecule involves not only the purely vibrational and rotational terms, but also a term due to their mutual influence. This involves adding to the energy expression a term of the form $-m^2a_nh$, or it is simply accounted for by writing instead of $A' = h/8\pi^2 I'$ the term $h/8\pi^2 I' - a_{n'}$, and instead of $h/8\pi^2 I''$ the term $h/8\pi^2 I'' - a_{n''}$. To a first approximation we may regard the correction as linear, and write $a_{n'} = \alpha'n'$ and $a_{n''} = \alpha''n''$. In Table IX these facts are illustrated : A'' diminishes as n'' increases and A' diminishes as n' increases. Approximately I have estimated $\alpha' = 0.03$, $\alpha'' = 0.025$. As a consequence, C = A' - A'' = $(h/8\pi^2 I' - h/8\pi^2 I'') - (0.03n' - 0.025n'')$ shows a decrease as n' increases, an increase as n'' increases, and a slight decrease as we travel along a sequence $\Delta n = a$ constant.


A little consideration shows that theoretically we should expect an increase in I when vibration of the nuclei sets in. For the effect of oscillation will be to cause each nucleus to travel in an undulating path instead of a circle, and a time average of the square of the distance between the nuclei (upon which I depends) will necessarily be greater than in the vibrationless state.

XI. The Energy Distribution amongst the Vibrational and Rotational States.

Fig. 6 shows the vibrational transitions which yield bands of the Swan spectrum. The figures give an estimate of the photographic intensity of each band head. Diagrams of this convenient type have been used by MULLIKEN (18), (24) in connection with the band spectra of BO, CuI, etc. The various sequences $\Delta n = n' - n'' = \text{constant}$, are given by the dotted diagonals. An estimate of the probability of the various initial states is obtained by adding up the intensities under a given value of n'. It would seem that the maximum occurs about n' = 1, and that there is a gradual falling off for higher values. As regards the distribution of intensities with respect to Δn , there is a fair degree of symmetry, with a marked tendency towards negative values (which is a feature of most band spectra). Another notable feature is the tendency of transitions either to small or large values of n''as n' increases. The same thing is found in the A bands of Copper Iodide, and in the α bands of BO two spectra already mentioned.

It is not yet possible to give a full theoretical treatment of the probability of various

vibrational states and transitions. It is customary, however, to classify intensity distributions on an experimental basis as characteristic of high and low temperature, and as thermal and non-thermal. Typical low temperature distributions exhibit a strong n' = 0 sequence, with a rapid fall off for n' = 1, 2, etc.—e.g., the second positive Nitrogen bands, the Aluminium Oxide bands, the Ångström bands, etc. High temperature distributions exhibit a small intensity decrement, or may actually show an increase outwards of n' and a maximum at some distance from the origin—e.g., the ultra-violet

 O_2^+ bands, the β bands of NO, etc. These latter are necessarily non-thermal in their origin, though for convenience they are described as high temperature distributions.

We may apply these ideas to make a closer study of the Swan band intensities. It is a matter of observation that the intensity distribution among the vibrational states does not appear very different, whether the development is in a tube (at a low temperature) or in a high temperature arc. The sequences are, however, somewhat more extensive under low temperature conditions.

Theory indicates that the probability of a molecule having vibrational energy E_n , say, will be proportional to $e^{-\frac{E_n}{kT}}$: k = 0.698, and T = absolute temperature. Let us take approximately for the initial state, E = 1773n. Then if $T = 373^{\circ}$, say, the factor is $e^{-6.812n'}$, and the probabilities of 0, 1, 2, etc., quanta of vibration are as 1:0.0011:

0.000001, etc. If $T = 4000^{\circ}$, the factor is $e^{-0.6352n}$, and the probabilities are as 1: 0.5296: 0.2807: 0.1487: 0.0788: 0.0417. If the distribution was thermal, we should expect in the tube production to find only the n' = 0 sequence, which is far from being the case. Under arc conditions the intensity fall certainly approximates to theory and it *may* be thermal in origin. The Swan bands may therefore be described as a high temperature distribution, non-thermal under the tube conditions.

In connection with the development of the various band heads in an Argon tube, an interesting phenomenon was noticed. Hydrogen was admitted through the regulator of the tube to such a point that the Swan bands were brilliant along the capillary portion, while the "Triplet System" was dominant in the wider side tube into which the capillary merged. An examination of the pale green glow a little outside the capillary (where Swan molecules were presumably radiating surrounded by an excess of "Triplet System" molecules) shows a peculiar development of the 5635 Swan group. Whereas under normal circumstances the estimated intensities of the heads are 7, 6, 5, 4 and 2, under these special conditions the first two heads are dominant, and the others almost invisible. Photographs of this phenomenon were taken, but were not satisfactory owing to the difficulty of keeping the tube exactly in the required condition. It is believed, however, that it is quite genuine, and not a general intensity reduction of the group. Photographs of the system through a neutral wedge would doubtless definitely settle the question.

The energy distribution among the *rotational* states is, however, entirely governed by considerations of temperature, since there is under normal conditions in any gas a statistically permanent distribution of angular velocities. KEMBLE (25) has shown (neglecting the slight variation of I with m owing to centrifugal distension of the molecule) that the value of m corresponding to maximum rotational energy is

$$m_{
m (max.)}=2\pi/h\sqrt{k
m IT}, ext{ where } k= ext{Boltzmann's Constant} = 1\cdot 372 imes 10^{-16} ext{ ergs.}$$

This may be written more conveniently

 $T = 1.431~(2A)m^2_{({
m max.})},~~{
m where}~2A = h/4\pi^2 {
m I}.$

The values of 2A for the Swan bands are given in Table IX.

An examination of arc plates of several bands shows a maximum intensity in both branches at, roughly, $m = 38 \pm 2$. This corresponds to $T = 7000^{\circ} \pm 1000^{\circ}$ C. approximately. The intensity maximum in the tube development can be determined with more precision for the R branches. It occurs at about R(12), corresponding to $m = 12\frac{1}{2}$ for the initial state. The corresponding temperature is 762 abs., or, say, $500^{\circ} \pm 150^{\circ}$ C. This is a very reasonable value for thermal equilibrium, as the tube, during continuous running, became very hot owing to the heavy current which was passing through it. Such comparatively low temperature distributions of rotational energy appear to be characteristic of the development of spectra in excess of high pressure Argon, and, as already mentioned (20), there is considerable analogy between these conditions and those of production in active Nitrogen.

XII. A new Band Spectrum associated with the Swan Bands.

RAFFETY (26) records a number of new bands which he found accompanied the Swan spectrum under certain conditions of production. Under the conditions described in the present paper these did not appear to be present: they were not, however, specially searched for. A quite different system has, however, invariably been found to accompany the Swan spectrum; it has probably escaped detection previously on account of its faintness. The strongest head would probably be of intensity (1) if we take the 5165 Swan band as (10). As far as the writer is aware, the system is new. There is only one pronounced sequence, presumably the $\Delta n = 0$ group; all the others have to be closely searched for, and in many cases they are confused with Swan band structure. For this reason the wave-lengths are not likely to be very accurate. The data, including a tentative assignment of vibrational quantum numbers are given in Table XIV. As the first differences of the wave-numbers are only approximate, a comparison of these with the corresponding values for the Swan bands is not conclusive. The present evidence, however, indicates that neither the initial or final states of the two systems are related. The bands are degraded towards the red side. The strongest bands have a faint head on the more refrangible side of the above. (These are not recorded in Table XIV.) It

Wave-Length. (I.A.).	Int.	v (Vacuo).	<i>n'</i> .	<i>n"</i> .
6923	0	14441	0	4
6334	1	15783	1	4
6217	3	16080	0	3
5982	2 ?	16712	3	5
5868	2c	17038	2	4
5758	2	17361	1	3
$5670 \cdot 3$	2	17631	0	2
5195	0	19246	0	1
$4996 \cdot 8$. 2	20007	3 .	3
$4911 \cdot 9$	4	20353	2	2
$4836 \cdot 2$	6	20672	1	1
4770.0	8	20958	0	0
4438	0c	22526	1	0

seems possible, therefore, that the measured head is really a well-developed Q branch. The relationship of this system to the Swan bands may possibly be similar to that of the so-called "Tail" bands of Cyanogen to the violet CN bands. To label the spectrum thus is not, however, to provide an explanation of it. A photograph of the strongest head at λ 4770 was obtained in the second order of a 21-foot grating. Under this dispersion it

proved to be of an exceedingly complex structure, with no obvious regularities. Its fine structure analysis was therefore not attempted, though it may ultimately be desirable in order to ascertain if its carrier has the same Moment of Inertia as that of the Swan emitter. In the next section a comparison is made between the HC-CH molecule and the N₂ molecule, which are probably very similar. If the HC-CH molecule is capable of a number of electronic levels such as are known to occur in N₂ (27), then it is likely that a natural place will ultimately be found for this new system in the scheme.

XIII. The Nature of the Swan Band Emitter.

The evidence already presented, which has been derived from an analysis of the spectrum, points strongly to a CH-HC molecule as the emitter. The moment of inertia and the resulting size of the molecule are such as we might expect by comparison with other molecules of about the same mass and electron structure. To the N₂ molecule the analogy should be very close, for this has the same number of electrons—viz., 14— which are presumably arranged in a similar manner. Plate 4 No. 6 is a photograph of the (0, 0) band of the second positive Nitrogen system, and even a casual glance reveals a remarkable similarity to the Swan structure of No. 5. This in itself is very convincing. Further, the absence of a Q branch indicates a high degree of symmetry in the molecule, since it indicates a pure rotational motion. This would be accounted for by a HC-CH structure in which the CH group is effectively one nucleus. Whether any internal oscillation of this group is possible is conjectural. It seems unlikely, for the binding of the CH group is probably a very close one in the Swan molecule, and dissociation of the latter into two CH groups would be the easier alternative in that case.

A discussion of the experimental evidence seems, however, desirable, especially as different observers have arrived at very different results and conclusions. On the basis of experimental work some observers (28) have, for example, assigned the system to CO. In addition, the relationship between the Swan bands and the CH bands (λ 4315, etc.) is of importance, as it is generally admitted that the latter have a hydrocarbon origin.

The suggestion of a CO origin will first be considered. It is well known that the discharge through imperfectly dried CO or CO_2 will yield the Swan spectrum. For example, a photograph by FOWLER (29) of the discharge through CO shows the system strongly, although the CH band and H α are not visible. BALY (28), writing in 1892, describes the preparation of pure CO from formic acid and sulphuric acid, and states that a discharge through pure CO gives the Swan spectrum (and not the Ångström bands). Admixture of a little Oxygen is stated, however, to destroy the Swan and substitute the Ångström bands. SMITHELLS (28) arrives at the same results as BALY, and attributes the Swan bands to CO and the Ångström bands to CO₂.

With regard to the Angström bands we now know quite definitely that they originate in a neutral CO molecule by a transition of the valence electron from a 2S to a 1P orbit. Its relations to the other spectra of the neutral CO molecule are known precisely (30), and the energy levels suggested by BIRGE and the author have been confirmed by

DUFFENDACK and Fox (31). To HULTHEN (32) we are indebted for a fine structure analysis of the bands, and this and other evidence confirms the diatomic character of the emitter. With regard to the production of the Swan bands from CO, it must be emphasised that the elimination of at least a trace of Hydrogen under discharge conditions is (as mentioned on page 158) an exceedingly difficult matter. In spite of every precaution to ensure complete purity and dryness of the gas, and cleanliness of the discharge tube, it is the writer's experience that the passage of a discharge usually produces some Hydrogen, probably from the glass walls of the tube. The writer has found that to completely remove Hydrogen it is usually necessary to attach to the discharge tube small side bulbs of potassium permanganate and phosphorus pentoxide, respectively. Prolonged running of the tube with frequent admission of Oxygen can usually be relied on to remove all Hydrogen as water into the P_2O_5 . Granted then the possibility of some Hydrogen in the CO under the discharge conditions used by these workers, the appearance of the Swan bands is not unexpected. For if, as seems likely, the Swan bands are the resonance system of the molecule, the excitation potential of the (0, 0) band will be $2 \cdot 39$ volts, which is considerably lower than that of the 4th positive bands (7 $\cdot 99$ volts), and than that of the Angström bands (10.72 volts). This should favour the production of the Swan system.

Further, there is more recent experimental evidence which is in definite contradiction to those workers who maintain that the Swan bands can be obtained from pure CO. In particular, BALDET (33) prepared very pure CO, and bombarded it with 100-volt electrons in a thermionic bulb. He observed the Ansgtröm bands, the 3rd positive bands. the negative carbon bands, and the Comet-Tail and associated bands. all of which we know to arise from CO and CO⁺ molecules. He specifically states, however, that "in spite of the intensity of emission, one could find no trace of the Swan group or of the so-called CH group." Against a CO origin for the Swan bands is also the knowledge we have of the CO molecule. Six electronic levels of the neutral molecule have been recognised, viz., 18, $1p_{123}$, 1P, 1s, 2S, and 2d, corresponding to the normal level and the initial levels of the Cameron bands, the 4th positive bands, the 3rd positive bands, the Angström bands, and the 3A bands respectively. It is unlikely that the Swan bands should arise in any higher level than these, but even if they could, then they should have their final level common with one of the above-mentioned electronic levels. I have made an investigation of all likely Carbon band spectra, and in no case does the Swan system have a level in common. DUFFENDACK and Fox (31), using pure CO under electronic bombardment, have confirmed the above scheme of levels, and they record no excitation potential appropriate to the Swan bands.

One further piece of experimental evidence^{*} is worth recording, viz., the phenomena of the relative intensity variations of the Swan bands and the CH bands in the coal-gas air flame. The phenomena are well illustrated in a Mecker burner. With admission of a certain quantity of air the cone has a pronounced green colour, but increasing the

* I am indebted to Prof. MERTON for pointing this out to me.

quantity of air beyond a definite amount changes this to an equally pronounced blue colour. These changes correspond to a diminution in the strength of the Swan system, and an increase in that of the CH bands when the Oxygen supply is increased. Now the CH bands have admittedly a hydrocarbon origin, and if the Swan bands originate in CO then the above observation admits of no satisfactory explanation. But if the Swan bands arise from C_2H_2 and the "CH" bands from a simple CH molecule, as the writer believes, a natural explanation follows from the increased tendency to dissociation of the former molecule in the hotter flame.

Turning now to the positive evidence in favour of a hydrocarbon origin for the Swan bands, we have the experimental observation recorded in Section II. Only Pure Hydrogen can be admitted by heating the Palladium regulator of such a tube. The fact that the tubes used were furnished with side bulbs containing caustic potash and phosphorus pentoxide, respectively, and in some cases had been run for hundreds of hours, eliminates any doubt as to their complete freedom from Oxygen. The Swan bands were therefore produced with intense brilliance in the presence of high pressure Argon, with only Carbon and Hydrogen present, and the admission of Hydrogen was necessary, otherwise the tube " cleaned up," leaving only the continuous and a little of the red spectrum of Argon.

WATTS (34) describes a number of experiments in which the possibility of Oxygen contamination was probably eliminated. These consisted in examining the spectrum of a minute spark under the surface of various carefully distilled hydrocarbons contained in a fluorspar vessel, the vessel being evacuated. Heptane, hexane, octane, etc., all yielded brilliant Swan spectra. Under these conditions we really have a discharge in a small vapour-filled cavity of which the walls consist of the liquid itself, and the results seem to admit therefore of only one interpretation. KONEN (35) has similarly obtained the Swan bands in the arc burned under various liquids, but in this case the possibility of contamination is appreciable.

Interesting evidence of a very different character is forthcoming in some experiments of HORI (36). He has examined the spectra of exploded threads of Mercury, using ANDERSON'S method, and reports that "under reduced pressure the Swan bands appear in absorption by this process owing to the presence of oil in the explosion chamber." (The exploded Mercury thread provides a continuous spectrum.) This result is interesting for two reasons : (1) It indicates that the Swan bands are probably the resonance system since they occur in absorption, and (2) it points to a hydrocarbon origin.

Granted the hydrocarbon origin of the Swan bands, the fine structure analysis indicates that two Carbon atoms are present. The singlet character of the levels definitely classes the Swan emitter as an even-valence electron molecule, which means that 2, 4, etc., Hydrogen atoms may be present in the molecule. The close analogy to the 2nd positive Nitrogen bands, which arise from a neutral N_2 molecule with 14 electrons, point to its origin in a CH-HC molecule which would also have 14 electrons.

It now remains to consider the degree of association of the Swan and the CH bands

189

under various experimental conditions. In view of the hydrocarbon origin of both these systems, some measure of association may be expected. I have made a few approximate calculations from a second order plate taken on the 21-foot grating of the λ 4315 CH band, and I find for the moment of inertia of the emitter I = 1.80×10^{-40} , corresponding to an internuclear distance d of about 1.09×10^{-8} cm. if we assume a CH molecule. This is in good agreement with the order of molecular sizes. Even the assumption of a CH_2 group would give d a highly improbable value, and we may put considerable confidence in the above result. A highly unsymmetrical molecule such as CH is quite in harmony with the nature of the λ 4315 and other bands which exhibit Q branches and other complications. As the Swan and the CH bands arise from different emitters we should expect—and experiment confirms—that under different conditions of production the relative intensities of the two spectra will vary considerably. Unfortunately we do not know anything about the excitation potential of the CH bands. The relative intensities of the two systems may, however, be expected to depend on the extent to which the C_2H_2 molecule is dissociated into CH molecules under given conditions. (An excellent discussion of the mechanism of molecular dissociation has been given by FRANCK (37).) We may therefore reasonably expect more energetic conditions of production to increasingly favour the CH bands. This was previously noted in the case of the coal-gas flame. I have observed that in general the production of these spectra, in the presence of high pressure Helium, Argon, or Neon with an uncondensed discharge gives a dominant Swan spectrum with the CH bands weak. Such, as we have seen, are mild low temperature conditions of production. In spectrum No. 1 of the present paper both the Swan and the CH bands are strong. In this case the conditions of production were somewhat intermediate between those just mentioned and an ordinary heavy capillary tube discharge, viz., a discharge through a high pressure Argon tube (containing Carbon and Hydrogen), but with a very heavy current.

The association of the CH bands with the Balmer Series is noteworthy. The appearance of the latter would be expected as a consequence of dissociation of the CH molecule. It may be mentioned that after prolonged running of the above Argon tube, dense films of fine Carbon were deposited. Dissociation of the CH molecule is probably not difficult, for the curiously isolated character of the few known bands (and the different directions in which they are degraded) suggests that they arise in different *electronic* states of the CH molecule, which is not sufficiently stable to admit of much vibration (*cf.* the Helium doublet bands).

Reverting to the Swan bands, there is cumulative evidence pointing to their origin in a HC-CH molecule. On the basis of recent classifications of band spectra the above would be a 2-valence electron emitter similar to N_2 , CO, etc. It is suggested that the structure of the molecule is probably as follows. Each Carbon atom retains its K electrons, which will be shared by the CH group and move in I_1 orbits. Common to the whole molecule will then be the complete L shell of the four 2_1 electrons and four 2_2 electrons, and finally, outside (but penetrating to between the nuclei), will be the two

VOL. CCXXVI.-A.

valence electrons in 3_1 orbits. The ground level will be 1S as in the magnesium atom. It follows from the recent views of BIRGE (38) that we may then expect the valence electron of the HC-CH molecule to be capable of a number of singlet and triplet levels as in the "corresponding" atom of magnesium.

Further evidence is found in an invariable relation* between the Moment of Inertia and the frequency of nuclear vibrations, discovered by BIRGE and MECKE. For molecules such as hydrides, the products I_{ω} are usually about 7,000, while for molecules like N_2 , CO, NO, O_2 , etc., the products I_{ω} are about 30,000. For the Swan bands the data of the green head give the product as 28,800, which indicates that the emitter is of the latter type. A HC-CH emitter, therefore, seems to be finally established.

I would like in conclusion to draw attention to the work of BIRGE and SHEA (39) on the Swan spectrum, of which only preliminary results have been published so far. I am especially grateful to Prof. BIRGE for his courtesy and generosity in several communications with reference to this work, and I would like to tender to him my very best thanks.

XIV. Summary.

(1) An extensive survey of the so-called Swan band spectrum has been made. For purposes of the analysis of its fine structure the spectrum has been photographed in the second order of a 21-foot grating, and the wave-lengths of about 2,000 lines are recorded.

(2) Series assignments have been made in the case of 11 bands. Details of the evaluation of the rotational energy functions are given, and full applications of the graphical method of determining moments of inertia with formulæ. From the second components of the triplets for the λ 5165 head, we have $I' = 16\cdot236\times10^{-40}$ and $I'' = 17\cdot410\times10^{-40}$, giving for the internuclear distances before and after the transition $1\cdot230\times10^{-8}$ cm. and $1\cdot274\times10^{-8}$ cm. These are appropriate to a HC-CH molecule.

(3) The application of the combination principle to the data of several of the bands is considered. A number of alternative explanations of the band structure are examined. It was finally decided that the bands consist each of a P and R branch typical of a di-polar emitter.

(4) The bands exhibit several anomalous features, perturbations, etc., and these have been examined and discussed.

(5) The fine structure multiplicity classes the bands as of the Heurlinger Triplet type. Certain theoretical views are put forward tentatively.

(6) The distribution of energy among the rotational and vibrational states is examined, and as regards the latter the Swan bands are a high temperature, but probably non-thermal system.

(7) A new band system associated with the Swan bands is recorded.

(8) The evidence both of direct experiment and of analysis is conclusive in assigning the Swan bands to a HC-CH molecule.

* I am indebted to Prof. BIRGE for informing me of this relation.

191

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	ν (Vacuo).	Series.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5165.910	10	10	10254.20	D (16) D (15)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			10		$\Gamma_2(17)$ D (10) D (17)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					$ \begin{array}{c} \Gamma_1 (10), \Gamma_3 (11) \\ D (11) D (10) \end{array} $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
					$\mathbf{F}_{1}(19)$ $\mathbf{D}_{1}(10)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0			$P_2(19)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$P_{3}(19)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$\mathbf{F}_{1}(20)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			$\mathbf{F}_{2}(20)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			oa		$\mathbf{F}_{3}(20)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4.7		$\mathbf{F}_{3}(9)$: $\mathbf{D}_{1}(91)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			40		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0		$\Gamma_1(0)$? D(91)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2	. 4		$\frac{1}{2} \frac{21}{21}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 5	4		$\frac{1}{3} (21)$ D (9) 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$P_{3}(0)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			54		$P_{1}(22)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			94		P(22)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			54		$P_{-}(7)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6		$P_{2}(23)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1	$\tilde{5}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$P_{1}(24)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			7		$P_{23}^{1}(24)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$P_{1}^{2,0}(25)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$P_{2}(25)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$61 \cdot 653$			$368 \cdot 26$	$P_{3}(25)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$61 \cdot 343$	3		$369 \cdot 42$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$61 \cdot 255$	3		$369 \cdot 75$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$61 \cdot 142$	3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7d		$P_{2\ 3}\ (26)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00 100				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$P_{3}(27)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			8	1	$\Gamma_{2,3}(20)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					P (90)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0		$1_{2,3}(20)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	$B_{12}(2)$?
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4		P_1 (30)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
56.658 1 4 387.02 $P_1(31)$					R ₁ (4)
56.537 3 6 387.47 $P_{2,3}(31)$		1			P ₁ (31)
	$56 \cdot 537$	3	6	$387 \cdot 47$	P _{2,3} (31)

TABLE I.

2 d 2

Table I (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc.)	ν (Vacuo).	Series.
5156.084	6d		19389.18	R ₃ (3), R ₂ (4)
$55 \cdot 627$	0	4	$390 \cdot 90$	$P_1(32)$
$55 \cdot 563$	4		$391 \cdot 14$	$R_{1}(5)$
$55 \cdot 496$	3	8	$391 \cdot 39$	$P_{2,3}^{(0)}(32)$
55.171	8	and the second se	$392 \cdot 61$	$R_{3}^{1}(4)$
54.969	8		$393 \cdot 37$	$R_{2}(5)$
$54 \cdot 419$	0	4	$395 \cdot 44$	
$54 \cdot 302$	0	6	$395 \cdot 44$ $395 \cdot 88$	P ₁ (33) P _{2.3} (33)
$54 \cdot 204$	8	0	$396 \cdot 25$	
$54 \cdot 148$	9		$396 \cdot 46$	\mathbf{R}_{1} (6)
		Encoder and the second s		$\mathbf{R}_{3}(5)$
53·748	10		397.97	$\mathbf{R}_{2}(6)$
$53 \cdot 269$	0	4	399.77	$P_{1}(34)$
$53 \cdot 143$	1	8	$400 \cdot 24$	$P_{2,3}(34)$
$53 \cdot 049$	10		400.60	$R_{3}(6)$
$52 \cdot 933$	9	Management	$401 \cdot 035$	$\mathbf{R_1}$ (7)
$52 \cdot 482$	9	An age of the second seco	$402 \cdot 73$	$\mathbf{R}_{2}(7)$
$51 \cdot 927$	0	4	$404 \cdot 82$	$P_{1}(35)$
$51 \cdot 876$	9vc		$405 \cdot 01$	R_3 (7)
$51 \cdot 812$	0	7d	$405 \cdot 25$	$P_{2,3}$ (35)
$51 \cdot 495$	10		$406 \cdot 45$	$R_1(8)$
$51 \cdot 143$	10		$407 \cdot 78$	$\mathbf{R}_{2}(8)$
50.645	0	4	$409 \cdot 66$	$P_{1}(36)$
50.625	10		409.73	$R_{3}^{-1}(8)$
50.532	0	8	410.08	$P_{2,3}(36)$
50.113	10		$411 \cdot 66$	$R_{1}^{2,3}(9)$
49.758	10		413.00	$\mathbf{R}_{2}^{(0)}$
$49 \cdot 303$	10		414.71	$R_{2}(9)$ $R_{3}(9)$
$49 \cdot 186$	0	3	415.15	
49.065	1	6d	$415 \cdot 61$	$P_1(37)$
$49 \cdot 583$	10	00		$P_{2'3}(37)$
$48 \cdot 299$		-	$417 \cdot 43$	$R_1(10)$
47.902			418.50	$R_{2}(10)$
			420.00	$R_{3}(10)$
47.792	1	3	$420 \cdot 41$	$P_{1}(38)$
47.673	1	8	420.86	$P_{23}(38)$
47.090	10		$423 \cdot 06$	$R_{1}(11)$
46.791	10		$424 \cdot 19$	$R_{2}(11)$
$46 \cdot 444$	10		$425 \cdot 50$	$R_{3}(11)$
$46 \cdot 183$	0	$\frac{3}{7}$	$426 \cdot 48$	$P_{1}(39)$
$46 \cdot 069$	1	7	$426 \cdot 91$	P ₂₃ (39)
$45 \cdot 450$	10		$429 \cdot 25$	R_1 (12)
$35 \cdot 210$	10		$430 \cdot 16$	$R_{2}(12)$
-44.899	10		$431 \cdot 33$	$R_{3}(12)$
$44 \cdot 662$	0	3	$432 \cdot 22$	$P_{1}(40)$
$44 \cdot 551$	1	8	$432 \cdot 64$	$P_{23}(40)$
$43 \cdot 846$	10		$435 \cdot 31$	$R_{1}(13)$
$43 \cdot 578$	10		$436 \cdot 32$	$R_{2}(13)$
$43 \cdot 307$	10		$437 \cdot 34$	R_{3}^{102} (13)
$42 \cdot 933$		3	438.76	$P_{1}(41)$
$42 \cdot 817$		6	$439 \cdot 20$	P_{23} (41)
42.011 42.092	10		$439 \cdot 20$ $441 \cdot 94$	$R_{1}^{1}(14)$
41.877	10		$441.94 \\ 442.75$	
$41 \cdot 626$	10			$R_{2}(14)$
$41 \cdot 020$ $41 \cdot 295$	0	3	443.70	$R_{3}(14)$
		8	444.95	$P_1(42)$
$41 \cdot 187 \\ 40 \cdot 363$		0	$445 \cdot 36$	$P_{23}(42)$
40.909	1 10		$448 \cdot 48$	$ R_1 (15) $

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Int. (Tube). Int. (Arc). v (Vacuo). Series. λ (I.A.). $5140 \cdot 122$ 10 $19449 \cdot 39$ R_2 (15) $39 \cdot 911$ 450.19 $R_{3}(15)$ 10 $P_{1}(43)$ $P_{23}(43)$ $R_{1}(16)$ $\frac{3}{5}$ 39.424452.030 $39 \cdot 317$ $452 \cdot 43$ $38 \cdot 493$ 10 $455 \cdot 56$ R_{2} (16) $38 \cdot 296$ 10 $456 \cdot 30$ 38.09410 $457 \cdot 07$ $R_{3}(16)$ $37 \cdot 672$ 458.66P₁ (44) 0 37.566459.06 $P_{23}(44)$ $R_{1}(17) = R_{2}(17)$ $36 \cdot 640$ 10 $462 \cdot 57$ $36 \cdot 426$ 10463.388 $R_{3}(17)$ $36 \cdot 256$ 10 $464 \cdot 03$ P_1 (45) P_{23} (45) 35.672 $466 \cdot 24$ -0 $35 \cdot 561$ $466 \cdot 66$ 9 $34 \cdot 654$ $470 \cdot 10$ R₁ (18) $34 \cdot 472$ 9 470.79 R_2 (18) 9 $34 \cdot 300$ $471 \cdot 44$ $R_{3}(18)$ $33 \cdot 802$ $473 \cdot 33$ P₁ (46) $33 \cdot 696$ $473 \cdot 73$ P23 (46) 9 $32 \cdot 681$ $477 \cdot 58$ R₁ (19) $R_{1} (19)$ $R_{2} (19)$ $R_{3} (19)$ $P_{1} (47)$ 9 $32 \cdot 481$ $478 \cdot 31$ $32 \cdot 343$ 9 $478 \cdot 87$ $31 \cdot 675$ 0 $481 \cdot 40$ 31.5730 481.79P23 (47) 30.5639 $485 \cdot 63$ R_{1} (20) $R_{2}(20)$ 9 $30 \cdot 400$ $486 \cdot 25$ 9 $30 \cdot 255$ $R_{3}(20)$ $486 \cdot 80$ 29.682 $488 \cdot 97$ P1 (48) $\begin{array}{c} P_{23} (48) \\ P_{1}' (16), P_{1}' (14) \\ P_{1}' (17), P_{2}' (16) \\ P_{1}' (18), P_{2}' (17) \\ P_{2}' (18), P_{3}' (17) \\ P_{1}' (19), P_{3}' (18) \\ P_{1}' (19) \end{array}$ $29 \cdot 582$ 489.359 $29 \cdot 337*$ 490.28 $29 \cdot 209$ 9 490.7729.09710 $491 \cdot 19$ $28 \cdot 962$ 8 491.71 $28 \cdot 832$ 8 492·20 $\begin{array}{c} P_{2}^{1} (10), P_{3}^{2} (19) \\ P_{1}^{1} (20), P_{3}^{2} (19) \\ R_{1} (21), P_{2}^{2} (20) \end{array}$ 28.7184 492.6328.585 $\mathbf{6}$ $493 \cdot 14$ $28 \cdot 476$ 6 $493 \cdot 55$ $28 \cdot 404$ 4 $493 \cdot 83$ $P_{3}'(20)$ $28 \cdot 294$ 8 $494 \cdot 25$ $R_{2}(21)$ $\begin{array}{c} R_{3}^{(21)} (21) \\ R_{3}^{(21)} (21) \\ P_{2}^{\prime} (21) \\ P_{3}^{\prime} (21) \end{array}$ $28 \cdot 175$ 8 494.70 $28 \cdot 052$ 4 $495 \cdot 16$ $27 \cdot 956$ $\mathbf{3}$ $495 \cdot 53$ $27 \cdot 855$ 1 $495 \cdot 92$ $P_{1}'(22) P_{2}'(22) P_{3}'(22)$ $27 \cdot 750$ 3d496.32 $27 \cdot 653$ 4 496.69 $27\cdot 557$ 4 497.05 $27 \cdot 382$ 1 497.72 $\begin{array}{c} P_{1}{'} (23) \\ P_{2}{'} (23) \\ P_{3}{'} (23) \end{array}$ $27 \cdot 257$ 4 $498 \cdot 19$ $27 \cdot 180$ 4 $498 \cdot 48$ $27\cdot 096$ 3 $498 \cdot 80$ $26 \cdot 871$ 1 499.66 $\begin{array}{c} P_{1}{}'(24)\\ P_{2\,3}{}'(24)\\ R_{1}(22), P_{1}{}'(25) \end{array}$ 26.7044 $500 \cdot 29$ $26 \cdot 603$ 4 500.68 $26 \cdot 245$ 8 502.0426.069 80 502.71 $R_{2}(22)$

Table I (continued).

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

THE ROYAL SOCIETY **PHILOSOPHICAL TRANSACTIONS**

0

λ (I.A.). Int. (Tube). Int. (Arc). v (Vacuo). Series. $5126 \cdot 028$ 2d $19502 \cdot 86$ $P_{2,3}'$ (25) $25 \cdot 961$ 8 $R_{3}(22) P_{1}'(26)$ $503 \cdot 12$ $25 \cdot 631$ 504.371 25.494) 3d504.90 P_{2,3}' (26) $25 \cdot 432$ 3d $505 \cdot 13$ 1c $25 \cdot 277$ $505 \cdot 72$ P₁ (50) 1 $25 \cdot 251$ $505 \cdot 82$ $\begin{array}{c} {\rm P}_{{}_{2,3}}\left(50\right) \\ {\rm P}_{1}^{\;\prime}\left(27\right) \\ {\rm P}_{{}_{2,3}}^{\;\prime}\left(27\right) \end{array}$ $25 \cdot 221$ 6c $505 \cdot 93$ $\frac{-}{2}$ $24 \cdot 898$ $507 \cdot 16$ $24 \cdot 777$ $507 \cdot 62$ $24 \cdot 335$ 509.31 $\begin{array}{c} {{\rm P_1}'}\left({28} \right)\\ {{\rm R_1}}\left({23} \right),\,{{\rm P_{2,3}}'}\left({28} \right) \end{array} \\ \end{array}$ $24 \cdot 157$ 0 509.988 24.038510.447 $R_{2}(23)$ $23 \cdot 865$ 511.06 $23 \cdot 766$ 7 $511 \cdot 48$ $R_{3}^{-}(23)$ 0 $23 \cdot 299$ $513 \cdot 25$ $\begin{array}{c} P_{1}{'}(29) \\ P_{1}(51), P_{2,3}{'}(29) \end{array}$ $23 \cdot 144$ 0d513.841c $22 \cdot 852$ $514 \cdot 96$ $515 \cdot 18$ $P_{2,3}(51)$ 22.7936c $\mathbf{2}$ $515 \cdot 92$ $22 \cdot 600$ $\begin{array}{c} P_{1}{'}(30) \\ R_{1}{'}(3), P_{2,3}{'}(30) \end{array}$ $22 \cdot 458$ 1 516.46 $22 \cdot 292$ 1d517.09 R_1 (24) 21.6806 519.42 $R_{2}(24)$ $R_{3}(24)$ 6 $519 \cdot 99$ 21.531 $21 \cdot 424$ $\mathbf{6}$ $520 \cdot 40$ $R_{2}'(3)$ $R_{1}'(4)$ $21 \cdot 331$ 0 520.751 $522 \cdot 02$ 20.99820.707 $523 \cdot 13$ P_1 (52) ----- $P_{2,3}$ (52) 20.617 $523 \cdot 47$ 0d $523 \cdot 55$ 20.59820.4560 $524 \cdot 09$ $\begin{array}{c} R_{3}'(3), R_{2}'(4) \\ R_{1}'(5) \\ R_{1}(25), R_{3}'(4) \\ \end{array}$ 20.3004 $524 \cdot 68$ 1 $526 \cdot 48$ 19.830 $\overline{7}$ 19.364 $528 \cdot 25$ $R_{2}^{'}(25), R_{2}^{'}(5)$ $\mathbf{6}$ 19.199528.88 $R_{3}^{-}(25)$ 5 $529 \cdot 21$ 19.113530.34 $18 \cdot 817$ 0 $\begin{array}{c} {\rm R_1}' \ (6) \\ {\rm R_3}' \ (5) \\ {\rm P_1} \ (53) \\ {\rm P_{2,3}} \ (53) \\ {\rm P}' \ (6) \end{array}$ $\mathbf{2}$ $531 \cdot 51$ 18.509 $\mathbf{2}$ 18.400 $531 \cdot 93$ 3c $532 \cdot 53$ $18 \cdot 241$ 3c $533 \cdot 22$ 18.062 $R_{2}'(6)$ $R_{3}'(6)$ $R_{1}'(7)$ $\mathbf{2}$ 18.034 $533 \cdot 33$ $17 \cdot 324$ $\mathbf{2}$ 536.041 $\mathbf{2}$ $17 \cdot 264$ $536 \cdot 27$ R₁ (26) 6 $537 \cdot 75$ 16.876 $R_{2}'(7)$ $537 \cdot 98$ 16.8164 R_{2} (26) 16.732 $\mathbf{6}$ 538.30 $R_{3}(26)$ $R_{3}'(7)$ $R_{1}'(8)$ 538.6616.638 $\mathbf{6}$ 16.1955540.35 $541 \cdot 59$ $15 \cdot 869$ 4 $P_{1}(54)$ $P_{23}(54)$ 541.64 $15 \cdot 856$ 5 $542 \cdot 02$ 15.758 $\begin{array}{c} R_{2}'(8) \\ R_{3}'(8) \\ R_{1}'(9) \end{array}$ 4 $15 \cdot 515$ $542 \cdot 95$ $544 \cdot 97$ 514.984546.72 $14 \cdot 527$ 4

Table I (continued).

THE ROYAL SOCIETY

PHILOSOPHICAL TRANSACTIONS

ЧO

Table I (continued).

λ (Ι.Α.)	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
$5114 \cdot 438$	4		$19547 \cdot 06$	R ₁ (27)
14.283	$\frac{1}{4}$		547.65	$R_{1}(27)$ $R_{2}(27)$
14.190	$\hat{6}$		548.01	$R_{3}^{2}(27), R_{2}^{\prime}(9)$
13.705	6		549.86	$R_{3}'(21), R_{2}'(5)$ $R_{3}'(9)$
13.196		0	$551 \cdot 81$	$P_{1}(55)$
13.082		5	$552 \cdot 24$	P(55)
13.051	6	0	$552 \cdot 36$	$P_{2,3}^{-1}$ (55) R_{1}' (10)
12.760			553.50	$R_{1}'(10)$ $R_{2}'(10)$
12.346	6		$555 \cdot 06$	$R_{3}'(10)$
11.833	4		557.02	R_{1}^{3} (10) $R_{1}(28)$
$11 \cdot 703$	$\frac{1}{4}$		557.52	$R_{1}(28)$ $R_{2}(28)$
$11 \cdot 606$	6		557.89	$R_{3}(28), R_{1}'(11)$
$11 \cdot 289$	5		559.10	$R_{3}(20), R_{1}(11)$ $R_{2}'(11)$
10.935	6			$R_{2}^{(11)}$ $R_{3}^{\prime}(11)$
$10 \cdot 355$ $10 \cdot 752$	0	1vc	560.46	\mathbf{n}_3 (11) \mathbf{D}_{1} (56)
10.752 10.665			$561 \cdot 16$	$P_{1}(56)$
10.003 10.011	6	3c	$561 \cdot 49$	$P_{23}(56)$
			563.99	$R_{1}'(12)$
$09 \cdot 759$ $09 \cdot 439$	6		564.96	$R_{2}'(12)$
	6		$566 \cdot 18$	$R_{3}'(12)$
$09 \cdot 294$	5		566.74	R_1 (29)
09.143	4		$567 \cdot 32$	$R_{2}(29)$
09.089	4		$567 \cdot 52$	$R_3(29)$
$08 \cdot 453$	5		$569 \cdot 96$	$R_{1}'(13)$
$08 \cdot 180$	5	-	$571 \cdot 00$	$R_{2}'(13)$
$07 \cdot 972$		1	$571 \cdot 80$	$P_{1}(57)$
$07 \cdot 901$	5		572.07	$R_{3}'(13)$
$07 \cdot 872$		5	$572 \cdot 19$	$P_{23}(57)$
$07 \cdot 618$	0		$573 \cdot 16$	
06.759	5		$576 \cdot 45$	$\mathbf{R_{1}'}$ (14)
06.536	5		$577 \cdot 31$	R_1 (30), R_2' (14)
$06 \cdot 432$	1		$577 \cdot 70$	R_{2} (30)
$06 \cdot 350$	1		$578 \cdot 02$	$R_{3}(30)$
$06 \cdot 271$	5 、	_	$578 \cdot 32$	$R_{3}'(14)$
$05 \cdot 434$		1	$581 \cdot 53$	$P_{1}(58)$
$05 \cdot 342$		4	$581 \cdot 89$	$P_{23}(58)$
05.079	5		$582 \cdot 90$	$R_{1}'(15)$
$04 \cdot 838$	5		$583 \cdot 82$	$R_{2}'(15)$
$04 \cdot 613$	5		$584 \cdot 68$	$R_{3}'(15)$
$03 \cdot 901$	3		$587 \cdot 41$	$R_{1}(31)$
03.761	3c		$587 \cdot 95$	$R_{2}(31)$
03.717	$\frac{3c}{2}$		$588 \cdot 12$	$R_{3}(31)$
$03 \cdot 274$	5.		$589 \cdot 82$	$R_{1}'(16)$
$03 \cdot 069$	5		$590 \cdot 61$	$R_{2}'(16)$
$02 \cdot 857$	5		$591 \cdot 42$	$R_{3}'(16)$
$02 \cdot 526$		0	$592 \cdot 69$	$P_{1}(59)$
$02 \cdot 422$. 4	593.09	$P_{23}(59)$
$01 \cdot 481$	5		$596 \cdot 71$	$R_{1'}(17)$
$01 \cdot 263$	5		$597 \cdot 54$	$R_{2}'(17)$
01.073	6		$598 \cdot 27$	$R_{3}'(17), R_{1}(32)$
00.929	2		598.83	$R_{2}(32)$
00.857	2		$599 \cdot 10$	$R_{3}(32)$
$5099 \cdot 877$		1	$602 \cdot 87$	$P_{1}(60)$
99.774		4c	$603 \cdot 26$	P_{23} (60)
$\begin{array}{c} 99 \cdot 561 \\ 99 \cdot 381 \end{array}$	5 5	-	$604 \cdot 08 \\ 604 \cdot 51$	$R_1'(18) R_2'(18)$

Table I (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	у (Vacuo).	Series.
$5099 \cdot 199$	5	·	$19605 \cdot 48$	R ₃ ' (18)
$98 \cdot 284$	1		609.00	$\begin{array}{c} \mathbf{R_{3}} (10) \\ \mathbf{R_{1}} (33) \end{array}$
$98 \cdot 133$	$\frac{1}{2}$		609.58	$R_{23}(33)$
97.662*			$611 \cdot 39$	$R_{1'}(19)$
97.579	1	2 TO THE REAL	$611 \cdot 71$	D''(17)
$97 \cdot 456$	5	and the state	612.18	$\begin{array}{c} \mathbf{R}_{1}^{\prime} (12) \\ \mathbf{P}_{1}^{\prime \prime} (17) \\ \mathbf{R}_{2}^{\prime} (19) \\ \mathbf{P}_{2}^{\prime \prime} (17), \mathbf{P}_{1}^{\prime \prime} (18) \\ \mathbf{P}_{2}^{\prime \prime} (17), \mathbf{P}_{1}^{\prime \prime \prime} (18) \end{array}$
				$\mathbf{D}''(17) \mathbf{D}''(19)$
$97 \cdot 414$	Oc		$612 \cdot 34$	$ \begin{array}{c} \Gamma_{2} (11), \Gamma_{1} (10) \\ D (10) D (10) \end{array} $
$97 \cdot 306$	5		612.76	$\begin{array}{c} R_{3}^{'}(19), P_{2}^{''}(18) \\ R_{3}^{''}(17) \\ P_{3}^{''}(18), P_{1}^{''}(19) \\ P_{23}^{''}(19), P_{1}^{''}(20) \end{array}$
$97 \cdot 268$	1		$612 \cdot 90$	$P_{3}^{*}(17)$
$97 \cdot 200$. 1		$613 \cdot 17$	$P_{3}^{*}(18), P_{1}^{*}(19)$
97.069	2d	autorities a	$613 \cdot 67$	$P_{23}^{"}(19), P_{1}^{"}(20)$
$96 \cdot 844$		0	$614 \cdot 53$	P_{1} (61)
$96 \cdot 801$	2		614.70	
$96 \cdot 740$		4	$614 \cdot 94$	P ₂₃ (61)
$96 \cdot 545$	1	and the second se	$615 \cdot 69$	$P_{23}^{23''}(21)$
$96 \cdot 361$	1d		616.39	
$96 \cdot 174$	1		$617 \cdot 11$	
$95 \cdot 885$	0		$618 \cdot 23$	
$95 \cdot 761$	1 .	A-111000	618.70	
$95 \cdot 621$	2		$619 \cdot 24$	$R_{1}'(20)$
$95 \cdot 457$	$\frac{2}{2}$		$619 \cdot 87$	$R_{2}'(20)$
$95 \cdot 311$		6	$620 \cdot 42$	R_{1}^{2} (34)
$95 \cdot 307$	4		$620 \cdot 45$	$R_{3}(20)$
$95 \cdot 264$	1c		$620 \cdot 62$	103 (20)
$95 \cdot 194$	1c $1c$	5	620.88	$R_{2}(34)$
$95 \cdot 134$	1c 1c	5	$621 \cdot 12$	$R_{3}^{(01)}$
	1c 1d	J	$622 \cdot 36$	113 (01)
94.811	$\frac{1a}{2d}$		$624 \cdot 52$	
$94 \cdot 250$	20			P ₁ (62)
94.095		0	$625 \cdot 12$	$\frac{1}{D}$ (62)
94.002	0.7	3	$625 \cdot 48$	$\frac{P_{23}}{R_{1}'} (62)$
93.615	$\frac{3d}{2}$	an and the second se	$626 \cdot 97$	\mathbf{n}_1 (21) \mathbf{D}_1 (21)
$93 \cdot 418$	3	and the second se	$627 \cdot 73$	$R_{2}'(21)$
$93 \cdot 301$	3		$628 \cdot 18$	$R_{3}'(21)$
$93 \cdot 023$	0		$629 \cdot 25$	
$92 \cdot 883$	Od		$629 \cdot 79$	
$92 \cdot 444$	1	5	$631 \cdot 48$	$R_1(35)$
$92 \cdot 292$	2	8d	$632 \cdot 07$	$R_{23}(35)$
$91 \cdot 460$	3		$635 \cdot 27$	$R_{1}'(22)$
$91 \cdot 291$	3		$635 \cdot 93$	$R_{2'}(22)$
$91 \cdot 157$	3	a	$636 \cdot 44$	$R_{3}'(22)$
90.932	and the second sec	0c	$637 \cdot 31$	$P_{1}(63)$
$90 \cdot 833$		2	$637 \cdot 69$	$P_{23}(63)$
$89 \cdot 661$	0		$642 \cdot 22$	
89.350		5	$643 \cdot 42$	R_1 (36)
89.345	3		$643 \cdot 44$	$R_{1'}(23)$
$89 \cdot 236$		5.	$643 \cdot 86$	\mathbf{R}_{2} (36)
$89 \cdot 178$		5	644.08	$R_3(36)$
89.162	3		$644 \cdot 14$	$R_{2}'(23)$
89.054	3		644.56	$R_{3'}^{2'}(23)$
			$646 \cdot 24$	
88·628 88·436			$646 \cdot 94$	
88·436			$647 \cdot 74$	
$88 \cdot 231$	U	2	649.65	P ₂₃ (64)
87.994				23 (U-1)
87.756	0		$649 \cdot 57 \\ 650 \cdot 15$	
87.606			000,10	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
5087.413	0		19650.90	
87.058	$\frac{0}{2}$		$652 \cdot 27$	R_{1}' (24)
86.915	$\frac{2}{2}$		652.82	$R_{2}'(24)$
86.795	2		653.28	$R_{3}'(24)$
$86 \cdot 453$			$654 \cdot 61$	\mathbf{R}_{3} (2±)
86.386	1	5	654.78	$R_{1}(37)$
$86 \cdot 234$		$\frac{3}{9d}$	655.45	
85.776	$2 \\ 2$	9a	$657 \cdot 22$	R ₂₃ (37)
85.313			659.01	
84.819	3			R_{1}' (25)
84.809	Э		660·92	
84.688		00	660·96	$P_1(65)$
$84 \cdot 662$		2	$661 \cdot 43$	$P_{23}(65)$
$84 \cdot 563$	3	PE FARMA	661.53	$R_{2}'(25)$
	3		$661 \cdot 91$	$R_{3}'(25)$
84.051	0	10000 C	662.73	
. 84.051	1		. 663.89	
83.489			$666 \cdot 07$	
83·313	0		$666 \cdot 75$	\mathbf{D} (20)
83.169	0	5	$667 \cdot 30$	R_1 (38)
83.051	1vd	5c	$667 \cdot 76$	$R_2(38)$
83·006		5c	. 667.93	$R_{3}(38)$
82.811	· 0	- 1	$668 \cdot 69$	\mathbf{D}
82.433	2		$670 \cdot 15$	$R_{1}'(26)$
$82 \cdot 279$	2		$670 \cdot 75$	$R_{2}'(26)$
$82 \cdot 185$	2		$671 \cdot 11$	$R_{3}'(26)$
81.756		1	$672 \cdot 77$	P ₂₃ (66)
$81 \cdot 620$	$\begin{array}{c}2\\2\end{array}$	271.075.000	$673 \cdot 30$	
80.954	2		$675 \cdot 88$	
80.221	0		$678 \cdot 71$	
80.085		6	$679 \cdot 24$	$R_{1}(39)$
80.080	2		$679 \cdot 26$	$R_{1}'(27)$
$79 \cdot 946$		10	$679 \cdot 78$	R ₂₃ (39)
79.938	2		$679 \cdot 81$	$R_{2}'(27)$
$79 \cdot 847$	1		$680 \cdot 16$	$R_{3'}^{\tilde{\prime}}(27)$
79.696	1		680.75	
79.607	1		$681 \cdot 09$	R_{3}'' (11)
78.698	0	·	$684 \cdot 62$	
$78 \cdot 431$		0	$685 \cdot 65$	$P_{1}(67)$
$78 \cdot 346$		1	$685 \cdot 98$	$P_{23}(67)$
$78 \cdot 339$	1		$686 \cdot 01$	R_{2}^{23} (12)
$78 \cdot 171$	1		$686 \cdot 66$	R_{3}'' (12)
77.581	1d		$688 \cdot 95$	$R_{1}'(28)$
$77 \cdot 449$	1		$689 \cdot 46$	$R_{2}'(28)$
77.368	1		689.77	$R_{3}'(28)$
$77 \cdot 196$	1		$690 \cdot 44$	
$76 \cdot 870$	1	******	$691 \cdot 70$	${ m R_2}''$ (13)
$76 \cdot 762$	1	4	$692 \cdot 12$	R_{1} (40)
$76 \cdot 626$	00	7	$692 \cdot 65$	R_{23} (40), R_{3}'' (12)
$75 \cdot 600$	1		$696 \cdot 63$	
$75 \cdot 389$		1	$697 \cdot 45$	P ₁ (68)
$75 \cdot 294$		1	$697 \cdot 82$	$P_{23}(68)$
$75 \cdot 273$	2		$697 \cdot 90$	R_{2}'' (14)
$75 \cdot 129$. 1		$698 \cdot 46$	$R_{1}'(29)$
$74 \cdot 987$	1		699.01	$R_{2}'(29)$

Table I (continued).

VOL. CCXXVI.-A.

2 E

Table I (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
$5074 \cdot 924$	1	······	19699 • 26	R ₃ ' (29)
		PT-AUTOMA		D''(15)
$73 \cdot 953$	1	and the second	$703 \cdot 02$	$R_1''(15)$
$73 \cdot 679$	1		704.09	$R_{2}''(15)$
73.578		4	$704 \cdot 48$	$\mathbf{R}_{1} (41)$
$73 \cdot 453$		9	$704 \cdot 96$	R_{23} (41)
$73 \cdot 442$	1		$705 \cdot 01$	R_{3}'' (15)
$73 \cdot 111$	0		$706 \cdot 29$	
$72 \cdot 532$	1		$708 \cdot 54$	$R_{1}'(30)$
$72 \cdot 420$	1		$708 \cdot 98$	$R_{2}'(30)$
$72 \cdot 330$	1	AL-1004-1-0	$709 \cdot 33$	$R_{3}'(30)$
$72 \cdot 196$	1	Berlennung	$709 \cdot 85$	$\begin{array}{c} R_{3}^{'}(30) \\ R_{1}^{''}(16) \end{array}$
$71 \cdot 961$	1c		710.76	R_{2}'' (16)
71.763		1	$711 \cdot 53$	$P_{23}(69)$
71.649	1		711.98	R_{3}^{2} (16)
70.591	Ōđ		716.09	
70.474	1d		716.54	R ₁ " (17)
$70 \cdot 258$	1^{1a}		717.38	$R_{2}''(17)$
	0	4		R_1^2 (11) $R_1(42)$
70.136		4	717.86	
$69 \cdot 994$		7	718.41	R_{23} (42)
$69 \cdot 982$	2d		718.46	R_{1}^{-7} (31), R'' (16)
69.779	1		$719 \cdot 25$	$R_{23}'(31)$
$68 \cdot 622$	1d		$723 \cdot 75$	R_{1}'' (18)
$68 \cdot 618$	-	1	$723 \cdot 76$	$P_{23}(70)$
$68 \cdot 416$	1c		$724 \cdot 55$	$\frac{P_{23}}{R_{2}''}(70)$
$68 \cdot 197$	1c		$725 \cdot 40$	R_{3}^{-} (18)
$67 \cdot 592$	0		$727 \cdot 76$	
$67 \cdot 494$	0d		$728 \cdot 14$	
$66 \cdot 845$	and the second se	4	730.66	R_1 (43)
$66 \cdot 814$	1		730.79	$R_1''(19)$
$66 \cdot 723$	pervision many	8	$731 \cdot 14$	R_{23} (43), R_{23}'' (19
$66 \cdot 343$	1		$732 \cdot 62$	23 ()/ 20 (
65.036	L	1	737.71	P ₂₃ (71)
$64 \cdot 999$	Od	T	737.85	- 23 (1-1)
		THE OTHER	738.50	$R_{1}''(20)$
$64 \cdot 834$	1		$739 \cdot 23$	$R_{2}''(20)$
$64 \cdot 645$				$\mathbf{D}_{2}^{\prime\prime}(20)$
$64 \cdot 418$	1d		740.12	$R_{3}''(20)$
$63 \cdot 290$	0	3	$744 \cdot 52$	$\mathbf{R}_{1} (44)$
$63 \cdot 164$	0	7d	$745 \cdot 01$	$R_{23}(44)$
$62 \cdot 919$	0c		$745 \cdot 96$	$R_1''(21)$
$62 \cdot 706$	0c		$746 \cdot 79$	$R_{2''}(21)$
$62 \cdot 578$	0c		$747 \cdot 29$	$R_{3}^{-''}(21)$
$61 \cdot 705$		1vd	750.70	$P_{23}(72)$
$60 \cdot 819$	0c		$754 \cdot 16$	$\begin{array}{c c} P_{23}^{-}(72) \\ R_{1}^{''}(22) \\ R_{2}^{''}(22) \end{array}$
60.655	00		$754 \cdot 80$	$R_{2}''(22)$
60.505	00		$755 \cdot 38$	$R_{3}''(22)$
59.908	0	3	$757 \cdot 71$	$\mathbf{R_1}(45)$
59.789	ů ů	$\ddot{8}d$	$758 \cdot 18$	R ₂₃ (45)
58.927		0	761.53	$P_{23}^{(-2)}(73)$
58.907	0		$761 \cdot 62$	- 23 (1.5)
			762.03	R_{1}'' (23)
58·803	0		762.76	$\mathbf{B}''(23)$
58·616	0			\mathbf{B}'' (93)
58.507	0		763.19	$\begin{array}{c c} R_{2''} (23) \\ R_{3''} (23) \\ R_{23''} (23) \\ R_{23''} (24) \end{array}$
56.442	1		$771 \cdot 26$	$\frac{1}{23} \left(\frac{2}{4}\right)$
$56 \cdot 237$	1	3	$772 \cdot 06$	R_1 (46)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	Int. (Arc.)	v (Vacuo).	Series.
$5056 \cdot 116$		6	$19772 \cdot 53$	R ₂₃ (46)
$54 \cdot 616$	·	$\tilde{O}d$	$778 \cdot 40$	P., (74)
$54 \cdot 312$	1		779.59	$R_{23}''(25)$
$52 \cdot 743$		2	785.73	$ \frac{R_{123}}{R_1} (47) $
$52 \cdot 632$	1	$\frac{1}{7}$	$786 \cdot 16$	R_{23} (47)
50.725		0	793.63	1023 (11)
$45 \cdot 346$		ĩ	814.78	R ₁ (49)
$45 \cdot 268$		$\frac{1}{6d}$	815.04	R_{23} (49)
$41 \cdot 409$		30	$830 \cdot 21$	$R_{1}(50)$
$41 \cdot 335$	-	$\frac{3c}{4c}$	830.50	$R_{23}(50)$
37.801	a representa	1^{10}	$844 \cdot 41$	$R_{1}(51)$
37.702	A result former	5	$844 \cdot 80$	$R_{23}(51)$
33.774	and starts	2?	$860 \cdot 29$	$R_{1}(52)$
$33 \cdot 642$		2?	860.81	$R_{23}(52)$
30.021	Reductions:	1	$875 \cdot 11$	$R_{1}(53)$
$29 \cdot 918$		5	$875 \cdot 51$	$R_{23}(53)$
$25 \cdot 879$. Without the	1	$891 \cdot 49$	$R_{1}(54)$
25.769		4	$891 \cdot 92$	$R_{23}(54)$
$22 \cdot 038$		1	906.70	$R_{1}(55)$
$\frac{22}{21} \cdot 933$	<u> </u>	$\frac{1}{3d}$	$907 \cdot 12$	$R_{23}(55)$
17.787		1	923.57	$R_{1}(56)$
17.685		3	$923 \cdot 97$	$R_{23}(56)$
13.857		1	$939 \cdot 18$	$R_{1}(57)$
13.757		4	939.58	$R_{23}(57)$
09.508		0	$956 \cdot 49$	$R_{1}(58)$
$09 \cdot 402$	ALCOHOMA 1	3	$956 \cdot 91$	$R_{23}(58)$
$05 \cdot 486$	And an address of	0	$972 \cdot 53$	$R_{1}(59)$
$05 \cdot 387$		4	$972 \cdot 92$	$R_{23}(59)$
$01 \cdot 034$		0	990.30	$R_{1}(60)$
00.925		3	990.74	$R_{23}^{1}(60)$
$4996 \cdot 925$	Subscription	0	$20006 \cdot 74$	$R_{1}^{23}(60)$
$96 \cdot 829$		4	$007 \cdot 13$	$R_{23}^{(01)}$
$92 \cdot 371$		0	$024 \cdot 99$	$R_1 (62)$
$92 \cdot 266$		$\overset{\circ}{2}$	$025 \cdot 41$	$R_{23}^{(02)}$
88.182	and the second se	ō	$041 \cdot 81$	$R_1(63)$
88.094		3	$042 \cdot 16$	R_{23} (63)
$83 \cdot 517$	Annual second	0d	060.57	$R_1 (64)$
$83 \cdot 450$	versional	2d	$060 \cdot 84$	$R_{23}^{1}(64)$
Service and the service of the servi				$R_{1}(65)$
$79 \cdot 172$		2	078.57	$R_{23}(65)$
$74 \cdot 532$		0	096.80	$R_{1}^{2}(66)$
$74 \cdot 427$		2	$097 \cdot 23$	$R_{23}(66)$
70.166	numero	0	$114 \cdot 46$	$R_{1}(67)$
70.079	·	2	114.81	$R_{23}(67)$
Publication		We encoded		$\mathbf{R_1}(68)$
$65 \cdot 230$	-	2	$134 \cdot 45$	$R_{23}(68)$
			-	$\mathbf{R_1}(69)$
60.811		2	$152 \cdot 39$	$R_{23}(69)$
	1000 B 1000		· · · ·	$R_{1}(70)$
$55 \cdot 944$		1	$172 \cdot 18$	R ₂₃ (70)
				$\mathbf{R_1}(71)$
$51 \cdot 382$		1	$20190 \cdot 76$	R ₂₃ (71)
				$R_{1}(72)$
$46 \cdot 320$		1	$211 \cdot 43$	$R_{23}(72)$

Table I (continued).

 $2 \ge 2$

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
		0 0 0	$20229 \cdot 92$ 251 · 02 270 · 07	$\begin{array}{c} R_1 \ (73) \\ R_{23} \ (73) \\ R_1 \ (74) \\ R_{23} \ (74) \\ R_2 \ (75) \\ R_{23} \ (75) \end{array}$

Table I (continued).

Notes.

* =Head of band.

In the two columns of intensities estimates are on the scale 0–10 as is usual. In the parts of great line density both columns have not as a rule been completed, but only that which is related to the measured wavelength. These remarks apply to all the bands, both of this and the other tables.

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
4737.084*	10	10	$21104 \cdot 15$	P ₁ (20), etc.
$36 \cdot 955$	10d	10	$104 \cdot 72$	$P_{2}(19)$, etc.
$36 \cdot 859$	8	9	$105 \cdot 15$	P_1 (21), etc.
36.796	5	?	$105 \cdot 43$	$P_{2}(20)$, etc.
$36 \cdot 697$	3c	3	$105 \cdot 87$	$P_{2}(21)$
$36 \cdot 636$	10	10	$106 \cdot 14$	$P_{3}(21), P_{1}(22)$
$36 \cdot 532$	5	7	$106 \cdot 61$	$P_{2}(22)$
$36 \cdot 444$	9c	4vc	107.00	$P_{3}(22), P_{1}(23)$
$36 \cdot 311$	5c	Report Const	$107 \cdot 59$	$P_{2}(23)$
$36 \cdot 228$	6	7	$107 \cdot 96$	$P_{3}(23)$
$36 \cdot 141$	6	- 4	$108 \cdot 35$	$P_1(24)$
36.038	6	Name and a first star	$108 \cdot 81$	$P_{2}(24)$
$35 \cdot 952$	7	9vd	$109 \cdot 19$	P ₃ (24)
$35 \cdot 839$	5	4	$109 \cdot 69$	$P_{1}(25)$
$35 \cdot 714$	5	8	$110 \cdot 26$	$P_{2}(25)$
$35 \cdot 629$	8		110.63	$P_{3}(25)$
$35 \cdot 447$	7	5	$111 \cdot 45$	$P_{1}(26)$
$35 \cdot 356$	7		$111 \cdot 85$	$P_{2}(26)$
$35 \cdot 275$	7	9	$112 \cdot 21$	$P_{3}^{2}(26)$
$35 \cdot 034$	6	4	$113 \cdot 29$	$P_{1}(27)$
$34 \cdot 942$	6	inner	$113 \cdot 70$	$P_{2}(27)$
$34 \cdot 863$	7	8	114.05	$P_{3}^{2}(27)$
$34 \cdot 555$	6	3	$115 \cdot 42$	$P_{1}(28)$
$34 \cdot 491$	6		115.71	$P_{2}(28)$
$34 \cdot 422$	7	9	116.02	$P_{3}^{2}(28)$
$34 \cdot 021$	5	3	117.80	$P_1(29)$
$33 \cdot 953$	8	9	118.11	$P_{23}^{-1}(29)$
$33 \cdot 538$	PROFESSION.	3?	119.96	$P_{1}(30)$
$33 \cdot 418$	10	10	$120 \cdot 49$	$P_{23}(30)$
$32 \cdot 909$	5c	3	$122 \cdot 76$	$P_{1}(31)$
$32 \cdot 810$	8	8	$123 \cdot 21$	$P_{23}(31)$

TABLE II.

Table II (continued).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	λ (I.A.) .	Int. (Tube).	Int. (Arc).	ν (Vacuo).	Series.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4732.300	4	5	21125.48	P. (32)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		9	J		$1_{23}(02)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	20		P (33)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	20		$1_{1}(55)$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1	10		D (33)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			40		$\Gamma_{23}(33)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			D (94)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			8		P_{23} (34)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Winner W		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		4	With the Allowed		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30.353	3		$134 \cdot 18$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		$134 \cdot 66$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30.089	2vd	Westman and	$135 \cdot 36$	$R_{2}(2), R_{1}(3)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30.009		4d	$135 \cdot 71$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2d	trapped and		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5vd	1	P_{ab} (35)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			40 (7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$\mathbf{B}_{-}(3)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			$P_{1}(36)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0	10		$\mathbf{P}_{23}(50)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					\mathbf{n}_1 (4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			To consequences		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					D (2) D (4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			5vd		P_{23} (37)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$144 \cdot 20$	$R_1(5)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$27 \cdot 889$			$145 \cdot 19$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$27 \cdot 711$	6	Accession and	$145 \cdot 99$	$R_{3}(4)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$27 \cdot 596$	6	0	146.50	$\mathbf{R}_{2}(5)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$27 \cdot 506$			$146 \cdot 91$	$P_1(38)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$147 \cdot 27$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0 .			40 ()
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	,	B. (6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$\mathbf{B}_{a}(6)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			T		$\mathbf{H}_{3}(0), \mathbf{H}_{1}(1)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		77			$\mathbf{P}(7)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(U F		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0			P_{23} (40)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8	1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			3		P ₁ (41)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			7	161.08	P ₂₃ (41)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$24 \cdot 094$	8			
23.751 8 1 163.71 R_1 (9)					
		8	1		$R_{1}(9)$
$20.400 00 100.04 P_1(42)$	$23 \cdot 455$	·	$\overline{5}c$	$165 \cdot 04$	$P_{1}(42)$
23.449 8 c 165.07 $R_2(9)$		8	1		R , (9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-			

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table II (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
4723.056	9	1	$21166 \cdot 83$	R ₃ (9)
		L		$\mathbf{L}_{3}(5)$
22.760	0		168.16	D (10)
22.550	9	1	$169 \cdot 10$	$R_1(10)$
$22 \cdot 300$	9	c	$170 \cdot 22$	\mathbf{R}_{2} (10)
$22 \cdot 215$		4	$170 \cdot 60$	$P_{1}(43)$
$22 \cdot 106$		8vc	$171 \cdot 09$	P ₂₃ (43)
$21 \cdot 958$	9	2	171.75	R ₃ (10)
$21 \cdot 820$	0		$172 \cdot 37$	
$21 \cdot 381$	9	2	$174 \cdot 34$	R ₁ (11)
$21 \cdot 148$	U	$\frac{2}{6c}$	$175 \cdot 38$	$P_1(44)$
	9			D (11)
$21 \cdot 119$	9	C O	$175 \cdot 51$	$R_2(11)$
$21 \cdot 047$		8vc	$175 \cdot 84$	$P_{23}(44)$
20.822	9	3	$176 \cdot 85$	$R_{3}(11)$
20.100	8	3	180.09	R ₁ (12)
19.886	8	c	$181 \cdot 05$	R ₂ (12)
19.831		3vc	$181 \cdot 29$	$P_{1}(45)$
19.732	Territory of	7vc	$181 \cdot 74$	$P_{23}^{'}(45)$
19.617	8	2	$182 \cdot 25$	$R_{3}^{23}(12)$
18.852	8	2	$102 29 \\185 \cdot 69$	
	0			\mathbf{R}_{1} (13)
18.706		3	$186 \cdot 34$	$P_1(46)$
$18 \cdot 621$	8	С	$186 \cdot 72$	$R_{2}(13)$
$18 \cdot 609$	- manufacture and	9	$186 \cdot 78$	P_{23} (46)
$18 \cdot 390$	8	3	187.76	R ₃ (13)
$17 \cdot 490$	8	3	$191 \cdot 80$	$R_1(14)$
$17 \cdot 303$	8	С	$192 \cdot 64$	$\mathbf{R}_{2}(14)$
$17 \cdot 290$		ő	192.70	$P_1(47)$
$17 \cdot 250$ $17 \cdot 181$		7c	$192.10 \\ 193.19$	$P_{23}(47)$
	0			
17.086	8	3	$193 \cdot 62$	R ₃ (14)
$16 \cdot 871$	0		$194 \cdot 59$	
$16 \cdot 162$	8	2	$197 \cdot 77$	$R_{1}(15)$
16.068		2	$198 \cdot 19$	P ₁ (48)
$15 \cdot 968$		10	$198 \cdot 64$	P_{23} (48)
$15 \cdot 953$	8	c	198.71	$R_{2}(15)$
$15 \cdot 769$	8	4	$199 \cdot 54$	$R_{3}(15)$
$15 \cdot 294$	10	-	$201 \cdot 67$	
$15 \cdot 231 *$			$201 \cdot 96$	
	8			
$15 \cdot 123$	5		$202 \cdot 44$	
15.054	5		$202 \cdot 75$	
$14 \cdot 949$	7		$203 \cdot 22$	
$14 \cdot 817$	2cd		$203 \cdot 82$	
$14 \cdot 724$	8cd		$204 \cdot 24$	R_1 (16)
$14 \cdot 544$	10d		$205 \cdot 04$	R_2 (16), P (49)
14.357	10d		$205 \cdot 89$	$R_{3}(16)$
$14 \cdot 211$	9		$206 \cdot 54$	
		-	$200 \cdot 34$ $207 \cdot 35$	
14.032	6 7			
$13 \cdot 876$	7		208.05	
$13 \cdot 716$	6	—	208.77	
$13 \cdot 470$	8d		$209 \cdot 87$	
$13 \cdot 323$	9		$210 \cdot 54$	R ₁ (17)
$13 \cdot 178$		9	$211 \cdot 19$	$P_{23}(50)$
13.166	2c		$211 \cdot 24$	
$13 \cdot 129$	6c		$211 \cdot 21$ $211 \cdot 41$	R ₂ (17)
			$211 \cdot 41$ $211 \cdot 87$	±v2 (±*)
13.027	6 7			P (17)
$12 \cdot 940 \\ 12 \cdot 774$	7 0		$\begin{array}{c} 212 \cdot 26 \\ 213 \cdot 01 \end{array}$	$R_{3}(17)$
			913.00	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table II (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
4712.637	5		01019.49	
	5		21213.63	
12.564	6		$213 \cdot 96$	
$12 \cdot 483$	6		$214 \cdot 32$	
$12 \cdot 249$	1		$215 \cdot 37$	
12.086	5		$216 \cdot 11$	
12.009	6d		$216 \cdot 45$	
11.877	0		217.05	
11.785		2	$217 \cdot 46$.	$P_1(51)$
11.783	5	· · · · · · · · · .	$217 \cdot 47$	$R_{1}(18)$
$11 \cdot 647$		6 <i>c</i>	218.08	$P_{23}(51)$
$11 \cdot 636$	5		$218 \cdot 13$	$R_{2}^{23}(18)$
$11 \cdot 485$	10		$218 \cdot 81$	R_{3}^{2} (18)
$11 \cdot 143$			220.35	
11.025			220.88	
10.948	2		$220 \cdot 00$ $221 \cdot 23$	
10.897	$\frac{2}{2c}$		$221 \cdot 23$ $221 \cdot 46$	
10.809	$\frac{2c}{2}$	Automation	$221 \cdot 40$ $221 \cdot 86$	
10.309 10.448	4	2		D (50)
10.448 10.327		3	$223 \cdot 48$	$P_1 (52)$
		5vc	224.03	$P_{23}(52)$
10.288	8		$224 \cdot 20$	R ₁ (19)
10.195			$224 \cdot 63$	
10.113	7		$224 \cdot 99$	R ₂ (19)
10.048	0		$225 \cdot 28$	
09.994	7		$225 \cdot 53$	R ₃ (19)
$09 \cdot 874$		3	226.07	
$09 \cdot 740$		10	$226 \cdot 67$	
$09 \cdot 727$	3		$226 \cdot 74$	
$09 \cdot 377$	1		$228 \cdot 31$	
$09 \cdot 203$	2		$229 \cdot 10$	
09.087		3	$229 \cdot 62$	P ₁ (53)
08.970		6d	$230 \cdot 15$	$P_{23}(53)$
$08 \cdot 892$	2d		$230 \cdot 50$	+ 23 (00)
08.673	6		$230 \cdot 50$ $231 \cdot 49$	R ₁ (20)
08.534	70		$231 \cdot 45$ $232 \cdot 11$	
08.398		*******		$R_2(20)$
08.311	00		232.73	R ₃ (20)
08.311 08.270		9	$233 \cdot 12$	D / (0) A
		-	233.30	R ₂ ' (2) ?
08.173	0		233.74	
08.016	0		$234 \cdot 45$	
$07 \cdot 917$	0		$234 \cdot 89$	
07.817	1		$235 \cdot 34$	
07.568		3	$236 \cdot 47$	P ₁ (54)
$07 \cdot 470$	2vd		$236 \cdot 91$	$R_{2}^{'}(3)$?
$07 \cdot 449$		7	$237 \cdot 00$	P23 (54)
$07 \cdot 289$	2c		$237 \cdot 73$	$R_{1}'(4)$?
$07 \cdot 094$	4	and the second se	$238 \cdot 61$	$R_1(21)$
$07 \cdot 070$		5c	238.72	
$07 \cdot 010$	0		$238 \cdot 99$	
06.928	5		$239 \cdot 36$	R ₂ (21)
06.833		8	$239 \cdot 78$	102 (41)
$06 \cdot 830$	5	U		D (01)
06.713	0	8	$239 \cdot 80$	R ₃ (21)
$06 \cdot 633$		0	240.33	D / (A) 9
06.524			240.69	R ₂ ' (4) ?
00.044	0		$241 \cdot 18$	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table II (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	ν (Vacuo).	Series.
$4706 \cdot 297$	3		$21242 \cdot 21$	R ₁ ′ (5) ?
06.099	.0		$243 \cdot 10$	$\mathbf{n}_1(0)$
		5		D / (A) 2
$05 \cdot 880$ 05 · 780	4.	5	244.09	$R_{3}'(4)?$
05.780	7	5	244.54	$R_{2}'(5)$?
$05 \cdot 404$	4d	5	$246 \cdot 24$	R_1 (22)
$05 \cdot 384$		5c	$246 \cdot 33$	
$05 \cdot 266$	7	9	$246 \cdot 92$	$R_{2}(22), R_{3}'(5)$
$05 \cdot 159$. 4:	And only the	$247 \cdot 34$	$R_{3}(22)$
05.086	6		$247 \cdot 67$	$R_{1}'(6)$?
$05 \cdot 064$	Brownski	2	$247 \cdot 77$	
04.947	0	9	$248 \cdot 30$	
$04 \cdot 829$	6	R.C. Manual	$248 \cdot 83$	$R_{2}'(6)$
$04 \cdot 564$	0		250.02	2 ()
$04 \cdot 247$	$\overset{\circ}{9d}$		$251 \cdot 46$	$R_{3}'(6), R_{1}'(7)$
	Ju	3		$10_3 (0), 10_1 (1)$
$04 \cdot 023$ 02 · 870			$252 \cdot 47$	10 / <i>(1</i> 7)
03.870	7	6 <i>c</i>	$253 \cdot 16$	$R_{2}'(7)$
03.748	6	8	$253 \cdot 71$	$R_1(23)$
03.591	5	4	$254 \cdot 42$	$R_{2}(23)$
03.503	5	4	$254 \cdot 82$	$R_{3}(23)$
03.330	7		$255 \cdot 60$	$R_{3}'(7)'?$
$03 \cdot 123$		4.	$256 \cdot 54$	
03.096	7		$256 \cdot 65$	$R_{1}'(8)$?
03.018		7	$257 \cdot 01$	1 ()
02.850	7		257.77	$R_{2}'(8)$?
02.366	8		$259 \cdot 95$	$\mathbf{\hat{R}_{3'}}^{2}(8)$?
$02 \cdot 044$	6		$261 \cdot 41$	$R_{1}'(9)$?
	5	P TTY GALA		$R_1 (3) = R_1 (24)$
01.963	9	10	261.78	\mathbf{n}_1 (24)
$01 \cdot 863$		10c	$262 \cdot 24$	D (24) D ((0)
$01 \cdot 825$	8		$262 \cdot 40$	$R_{2}(24), R_{2}'(9)$
01.734	5		$262 \cdot 82$	$R_{3}(24)$
$01 \cdot 374$	8		$264 \cdot 44$	R_{3}' (9)
$01 \cdot 034$		2	$265 \cdot 98$	
00.927		7c	$266 \cdot 47$	
00.873	9	Provide a	$266 \cdot 71$	
00.303	7		$269 \cdot 29$	
00.229	2	To Calor	$269 \cdot 62$	R ₁ (25)
00.078	$\frac{2}{2}$		270.30	$R_{2}(25)$
00.009	$\frac{2}{2}$		270.62	$R_{3}^{(25)}$
$4699 \cdot 844$	4	2	$270 \cdot 02$ $271 \cdot 37$	
	7	4		
99·748	1	17 -	$271 \cdot 80$	
99.741	<u> </u>	70	$271 \cdot 84$	D / /141 9
$99 \cdot 284$	$\begin{array}{c} 6 \\ 7 \end{array}$	R PP Cauch at	$273 \cdot 90$	$R_{2}'(11)$?
$99 \cdot 224$	7		$274 \cdot 17$	
98.783	·	2	$276 \cdot 17$	
$98 \cdot 677$		5	$276 \cdot 65$	
$98 \cdot 514$	7		$277 \cdot 38$	R_{1}' (12) ?
$98 \cdot 354$	4		$278 \cdot 11$	$R_1(26)$
$98 \cdot 212$	8		$278 \cdot 75$	$R_{2}(26), R_{2}'(12)$
$98 \cdot 147$	0 · · ·	Ald Notices	279.04	$R_{3}^{2}(26)$
98.063	6		279.43	$R_{3}'(12)$?
97.604*	9		281.51	3 () ·
	$\frac{9}{3c}$	a province a	$281 \cdot 93$	
97.512				
97.456	5	WWW does at	$282 \cdot 18$	
$97 \cdot 394$	7		$282 \cdot 46$	
97·300	9		$282 \cdot 89$	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (I.A.). Int. (Tube). Int. (Arc). v (Vacuo). Series. $4697 \cdot 223$ $21283 \cdot 23$ 1c $97 \cdot 149$ 4c $283 \cdot 57$ 97.0513c $284 \cdot 01$ $R_{2}'(13)$? $96 \cdot 980$ 3c $284 \cdot 33$ $96 \cdot 889$ 9 284.7596.771 $\mathbf{3}$ $285 \cdot 28$ $96 \cdot 653$ 9 $285 \cdot 82$ $96 \cdot 505$ 7d $\begin{array}{c} { m R_1} (27) \\ { m R_2} (27) \end{array}$ $286 \cdot 49$ $96 \cdot 402$ $\mathbf{6}$ $286 \cdot 95$ 96.340 $\mathbf{6}$ $287 \cdot 23$ $R_{3}(27)$ $96 \cdot 220$ 6d $287 \cdot 78$ $96 \cdot 164$ 0 288.0396.084 $\mathbf{2}$ 288.3996.013 $\mathbf{6}$ 288.72 $95 \cdot 858$ 6d $289 \cdot 42$ $95 \cdot 751$ 10 $289 \cdot 90$ R₂' (14) ? $95 \cdot 614$ $\mathbf{6}$ 290.53 $95 \cdot 499$ 6c291.05 $95 \cdot 351$ $\mathbf{6}$ $291 \cdot 72$ $95 \cdot 207$ 6 $292 \cdot 37$ 95.062 $\mathbf{6}$ $293 \cdot 03$ $94 \cdot 953$ $\mathbf{6}$ $293 \cdot 53$ $94 \cdot 699$ 7 $294 \cdot 68$ $94 \cdot 610$ $\mathbf{6}$ $295 \cdot 08$ R_1 (28), R_2' (15) ? $94 \cdot 479$ 8 5 5 $295 \cdot 68$ $R_{2}(28)$ $94 \cdot 175$ $R_3(28)$ $297 \cdot 06$ $94 \cdot 095$ $297 \cdot 42$ $94 \cdot 005$ 7 $297 \cdot 83$ 93.790 $298 \cdot 80$ $93 \cdot 700$ $299 \cdot 21$ $93 \cdot 564$ 6 299.83 $93 \cdot 470$ 5d300.26 $93 \cdot 316$ $\begin{array}{c} {\rm R_1'} (16) ? \\ {\rm R_2'} (16) ? \\ {\rm R_3'} (16) ? \end{array}$ 5300.96 $93 \cdot 109$ 5 $301 \cdot 90$ $92 \cdot 942$ 5d $302 \cdot 65$ $92 \cdot 852$ 6 4 $303 \cdot 06$ $92 \cdot 675$ 6d1 $303 \cdot 86$ R₁ (29) $92 \cdot 568$ 3d0 304.35 $R_{2}(29)$ $92 \cdot 476$ 0 304.77 $R_{3}(29)$ $92 \cdot 369$ $\mathbf{2}$ $305 \cdot 25$ $92 \cdot 226$ 1 ----- $305 \cdot 90$ $92 \cdot 132$ 1 306.33 $91 \cdot 961$ $\mathbf{5}$ 5 $307 \cdot 11$ $R_1'(17)$? $91 \cdot 853$ 0 $307 \cdot 60$ -91.75955 $308 \cdot 02$ R₂′ (17) ? 91.6780 308.39 $91 \cdot 561$ 1 5 $308 \cdot 92$ $R_{3}'(17)$? 91.3060d310.0890.9826c1vd $311 \cdot 56$ 90.787 $\begin{array}{c} {\rm R}_2 \ (30) \\ {\rm R}_3 \ (30) \\ {\rm R}_1' \ (18) \ ? \end{array}$ 0d $312 \cdot 44$ 90.554 $\mathbf{6}$ $\mathbf{6}$ $313 \cdot 50$ 90.4937313.78c90.407 $2 \\ 7 \\ 7$ 3c $314 \cdot 17$ 90.295 $\frac{2}{2}$ ${\rm R_{2'}}_{2'}$ (18) ? ${\rm R_{3'}}_{3'}$ (18) ? $314 \cdot 68$ 90.117 $315 \cdot 49$

Table II (continued).

VOL. CCXXVI.-A.

2 F

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table II (continued).

λ (I.A.).	Int. (Tube).	Int. (Arc).	ע (Vacuo).	Series.
$4689 \cdot 976$	0		$21316 \cdot 13$	
89.871	1		$316 \cdot 60$	
89.790	0		$316 \cdot 97$	
89.626	$\frac{0}{2}$		317.72	
$89 \cdot 453$	$\frac{2}{2d}$	5	318.50	
	Δa		319.06	
89·331	0	6		
$89 \cdot 266$	0		319.35	
$89 \cdot 238$		7	$319 \cdot 48$	
$89 \cdot 140$	0	ang aligney an	$319 \cdot 93$	
$89 \cdot 048$	7		$320 \cdot 34$	
88.890	0	2	$321 \cdot 06$	
88.798	2	4	$321 \cdot 48$	
88.700	9d	8	$321 \cdot 93$	$R_{2}'(19)$?
$88 \cdot 494$	7	8	$322 \cdot 86$	
88.349	2		$323 \cdot 52$	
88.288	1		$323 \cdot 80$	
88.193		2	$324 \cdot 23$	
88.105		$\frac{2}{6}$	$324 \cdot 63$	
88.078	1d	0	$324 \cdot 75$	
		and the second		
87·959	7c	10.4 A.M.4 (M	$325 \cdot 29$	
$87 \cdot 892$	4c		$325 \cdot 60$	
$87 \cdot 647$	0		$326 \cdot 71$	
$87 \cdot 490$	6 <i>c</i>	2	$327 \cdot 43$	
$87 \cdot 443$	6c	march 5500	$327 \cdot 64$	
$87 \cdot 332$	3	0.00.0740.079	$328 \cdot 15$	
$87 \cdot 198$	7d	8	$328 \cdot 76$	
$87 \cdot 012$	6d		$329 \cdot 60$	
86.877		1	$330 \cdot 22$	
86.737	2		330.86	
86.730		4c	$330 \cdot 89$	
86.527	00	3.0	$331 \cdot 81$	
		5	332.01	
$86 \cdot 483$	5	5vc		
86.379	5		$332 \cdot 49$	
$86 \cdot 281$	1		$332 \cdot 93$	
86.070	5		$333 \cdot 89$	
86.003	5	6	$334 \cdot 20$	
$85 \cdot 915$		1	$334 \cdot 60$	
$85 \cdot 812$		2	$335 \cdot 07$	
$85 \cdot 807$	4.		$335 \cdot 09$	
85.700	4	3	$335 \cdot 58$	
$85 \cdot 514$	* 7	1011070	$336 \cdot 42$	
$85 \cdot 424$	·	1c	$336 \cdot 83$	
$85 \cdot 395$	5	10	336.95	
	0	3c	$337 \cdot 37$	
85.307		90	337.58	
$85 \cdot 261$	0			
85.077	5		$338 \cdot 41$	
84.974	5	a samanin	338.88	
$84 \cdot 880$	5	de-distribute at	$339 \cdot 31$	
84.777*	4dc	(0.000-0.000 M)	$339 \cdot 78$	
84.709	9c		340.09	
$84 \cdot 610$	90	AN189-10-	340.58	
$84 \cdot 553$	9c		$340 \cdot 80$	
$84 \cdot 432$	2c	(hast-duct)	341.35	
$84 \cdot 362$	$\overline{9c}$	B- IN THE R	$341 \cdot 67$	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ(I.A.). Int. (Tube). Int. (Arc). v (Vacuo). Series. • $4684 \cdot 219$ $21342 \cdot 32$ 7d84.0666c $343 \cdot 02$ $83 \cdot 999$ $343 \cdot 32$ 4c $83 \cdot 895$ $\mathbf{2}$ $343 \cdot 80$ $83 \cdot 710$ 6dc $344 \cdot 64$ 7 $83 \cdot 629$ 5 $345 \cdot 01$ $\frac{3}{7}$ $83 \cdot 545$ $345 \cdot 39$ $83 \cdot 432$ $345 \cdot 91$ $83 \cdot 237$ 6d $346 \cdot 79$ 8 $82 \cdot 981$ $347\cdot 97$ 3 $82 \cdot 855$ $348 \cdot 54$ $82 \cdot 808$ 4 $348 \cdot 75$ $82 \cdot 713$ 4 $349 \cdot 19$ 7 $82 \cdot 609$ 349.66 $82 \cdot 518$ 5350.08 $82 \cdot 428$ 4 $350 \cdot 49$ $82 \cdot 168$ 8 $351 \cdot 67$ $82 \cdot 025$ 1 $352 \cdot 32$ $81 \cdot 949$ 0? $352 \cdot 67$ 8 $81 \cdot 872$ $353 \cdot 02$ $81 \cdot 735$ 0 $353 \cdot 65$ $81 \cdot 645$ 1 $354 \cdot 06$ $81 \cdot 551$ 8 $354 \cdot 49$ $81 \cdot 439$ ${3 \atop {5}}$ $355 \cdot 00$ $356 \cdot 29$ $81 \cdot 156$ 81.054 $356 \cdot 75$ 80.9596 $357 \cdot 19$ 80.906 $\mathbf{6}$ $357 \cdot 43$ 80.7700d358.0580.728 $\mathbf{6}$ $358 \cdot 24$ 80.4267d $359 \cdot 62$ 80.1633d360.8280.0561 $361 \cdot 31$ $79 \cdot 854$ 4 $362 \cdot 05$ $79 \cdot 814$ 6 $362 \cdot 41$ 79.6861 363.0079.5575 $363 \cdot 81$ $79 \cdot 480$ 0 $363 \cdot 94$ $79 \cdot 389$ $\mathbf{2}$ $364 \cdot 35$ $79 \cdot 301$ 7c $364 \cdot 75$ $79 \cdot 248$ 3c $365 \cdot 00$ $79 \cdot 154$ 4d $365 \cdot 43$ $79 \cdot 035$ 0 $365 \cdot 97$ $78 \cdot 918$ 1d $366 \cdot 50$ 3 78.786 $367 \cdot 11$ $78 \cdot 691$ 1 367.54 $78 \cdot 595*$ 4c $367 \cdot 98$ $78 \cdot 548$ 6c $368 \cdot 19$ $78 \cdot 459$ 3vd368.60 $78 \cdot 346$ 9 $369 \cdot 11$ $78 \cdot 212$ 369.735 $78 \cdot 097$ 7d $370 \cdot 25$ 77.8785vc $371 \cdot 25$ $77 \cdot 752$ $\mathbf{3}$ $371 \cdot 83$ 3 $77 \cdot 681$ $372 \cdot 25$

Table II (continued).

2 + 2

A MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS SOCIETY

λ(I.A.). Int. (Tube). Int. (Are). v (Vacuo). Series. $4677 \cdot 604$ 1c $21372 \cdot 50$ 77.518 $372 \cdot 90$ 4c $77 \cdot 453$ $373 \cdot 19$ 6c $77 \cdot 324$ 7vd $373 \cdot 78$ $77 \cdot 167$ $374 \cdot 50$ 1 77.0555d $375 \cdot 01$ 7 375.7876.88776.8180c $376 \cdot 09$ 76.736 4 $376 \cdot 47$ 76.6624 $376 \cdot 81$ $\mathbf{2}$ $76 \cdot 551$ $377 \cdot 31$ $\overline{7}d$ $76 \cdot 394$ 378.03 $378 \cdot 91$ $76\cdot 203$ 5c $76 \cdot 152$ 4c $379 \cdot 14$ 75.9968d379.86 $75 \cdot 906$ 1 $380 \cdot 27$ 75.798 $\mathbf{6}$ 380.76 $75 \cdot 659$ $381 \cdot 40$ 4c $75 \cdot 578$ 381.776vc $75 \cdot 421$ $382 \cdot 48$ 3d $75 \cdot 333$ 0 $382 \cdot 89$ $383 \cdot 57$ 75.1845c $75 \cdot 120$ $383 \cdot 86$ 0c? 2vd $74 \cdot 932$ $384 \cdot 72$ $74 \cdot 687$ $385 \cdot 84$ 5d $74 \cdot 464$ 7d $386 \cdot 86$ $74 \cdot 303$ 5 $387 \cdot 60$ $74 \cdot 235$ $387 \cdot 91$ 4 74.0853c $388 \cdot 59$ $73 \cdot 911$ 2vd $389 \cdot 39$ $\frac{3}{0}$ $73 \cdot 735$ 390.20 $73 \cdot 635$ 390.65 $390 \cdot 97$ $73 \cdot 566$ 1 $73 \cdot 450$ $\mathbf{6}$ $391 \cdot 50$ $73 \cdot 334$ 3c392.03 $73 \cdot 273$ 4c $392 \cdot 31$ $73 \cdot 166$ $392 \cdot 80$ 3d73.096 $393 \cdot 12$ 6 $72 \cdot 924$ 5 $393 \cdot 91$ 72.7693 $394 \cdot 62$ $72 \cdot 588$ 8 $395 \cdot 45$ $72 \cdot 370$ 0d396.44 $72 \cdot 258$ 396.96 1c $72 \cdot 191$ 0c $397 \cdot 26$ 72.049 $397 \cdot 91$ 1 $71 \cdot 901$ 6 398.60 $71 \cdot 809$ $399 \cdot 02$ 571.705 $399 \cdot 49$ 6 71.5557d400.1871.364401.051 $71 \cdot 182$ 5 401.8971.0441d $402 \cdot 52$ $70 \cdot 918$ $403 \cdot 10$ 0d70.7895 $403 \cdot 69$ 70.6703 $404 \cdot 23$

Table II (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
$4670 \cdot 428$	6d		$21405 \cdot 34$	
70.280	6d		$406 \cdot 02$	
$70 \cdot 202$	0 <i>c</i> .	And the second	$406 \cdot 38$	
$70 \cdot 109$	7		406.80	
$69 \cdot 998$	1	Same and P	$407 \cdot 31$	
$69 \cdot 824$	3c	Accession of the	$408 \cdot 11$	
$69 \cdot 787$	0c	-	$408 \cdot 28$	
$69 \cdot 508$	1	s National	409.56	
$69 \cdot 417$	7		$409 \cdot 98$	•
$69 \cdot 130$	5c		$411 \cdot 29$	
$68 \cdot 981$	5c		$411 \cdot 97$	
$68 \cdot 807$	7		412.77	
$68 \cdot 688$	6		$413 \cdot 32$	
$68 \cdot 572$	1c		$413 \cdot 85$	
$68 \cdot 518$	3c	101 × 101 × 1	$414 \cdot 10$	
$68 \cdot 208$	7vd		$415 \cdot 52$	
$67 \cdot 923$	71		416.83	
67.835	1		$417 \cdot 23$	
67.558	$\frac{2d}{2}$	A 6 10 10 1	418.50	
$67 \cdot 445$	8		419.02	
$67 \cdot 325$	3c	100000, Ta	419.57	
$67 \cdot 281$	4c		419.78	
67.161	7		420.33	
67·077	7		420.71	
$66 \cdot 765 \\ 66 \cdot 652$	$5 \\ 2$	An ann an Ann	$422 \cdot 14$	
$66 \cdot 521$	$\frac{2}{2c}$	h-set down	$422 \cdot 66$	
$66 \cdot 368$			$423 \cdot 26$ $423 \cdot 97$	
$66 \cdot 187$	3	The design of the second secon	423.91	
66.095	$\frac{3}{2}$	-	$424 \cdot 80$ $425 \cdot 22$	
$65 \cdot 914$	8		$425 \cdot 22$ $426 \cdot 05$	
$65 \cdot 810$	0		426.53	
65.740	0		$426 \cdot 85$	
$65 \cdot 659$	9		$420 \cdot 22$	
65.579	0		$427 \cdot 59$	
$65 \cdot 344$	4		428.67	
$65 \cdot 276$	ĩ	-	$428 \cdot 98$	
65.063	5		429.96	
$64 \cdot 806$	6		$431 \cdot 14$	
$64 \cdot 717$	6		431.55	
$64 \cdot 543$	5		$432 \cdot 35$	
$64 \cdot 300$	8vd	Table of America	$433 \cdot 46$	
$64 \cdot 138$	2d	A HARMEN	$434 \cdot 21$	
64.035	2d		$434 \cdot 68$	
$63 \cdot 943$	2		$435 \cdot 11$	
$63 \cdot 857$	3		$435 \cdot 50$	
$63 \cdot 653$	4	11 10 Million	$436 \cdot 44$	
$63 \cdot 475$	5d		$437 \cdot 26$	
$63 \cdot 350$	4	4400.00	$437 \cdot 83$	
$63 \cdot 255$	4d		$438 \cdot 27$	
$63 \cdot 107$	2	- 100 000	$438 \cdot 95$	
63.004	4	PT0/Product	$439 \cdot 42$	
$62 \cdot 931$	4		$439 \cdot 76$	
$62 \cdot 687$	4d		440.88	
$62 \cdot 554$. 5	And a second	$441 \cdot 49$	-

Table II (continued).

Table II (continued).

λ (I.A.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
$4662 \cdot 458$	2		$21441 \cdot 93$	
$62 \cdot 331$	$\ddot{5}d$		$442 \cdot 52$	
$62 \cdot 210$		*** 10.004	$442 \cdot 52$ $443 \cdot 07$	
	3			
62.083	4	An other set	443.66	
$61 \cdot 982$	3		$444 \cdot 12$	
$61 \cdot 887$	$\frac{6c}{2}$	Record rouge	$444 \cdot 56$	
$61 \cdot 584$	5	An angewood and a grade of the second s	$445 \cdot 95$	
$61 \cdot 292$	4vd		$447 \cdot 29$	
60.941 .	6vd	Aug	$448 \cdot 91$	
60.776	2c		$449 \cdot 67$	
60.740	3c	A	$449 \cdot 84$	
60.634	2	National and American State	450.33	
$60 \cdot 510$	4cd		$450 \cdot 90$	
$60 \cdot 253$	6	A DEPENDENCE OF	$452 \cdot 08$	
$60 \cdot 115$		and the second s	$452 \cdot 71$	
$59 \cdot 981$	4c		$453 \cdot 33$	
59.771			454 · 30	
	4			
$59 \cdot 693$	4	*** *** * .4	$454 \cdot 66$	
$59 \cdot 483$. 4		$455 \cdot 62$	
$59 \cdot 401$	4	· · · · · ·	$456 \cdot 00$	
$59 \cdot 324$	4cd		$456 \cdot 35$	
$59 \cdot 185$	5vd	- p - 0 - 00 - 00	$456 \cdot 99$	
$58 \cdot 955$	2		458.05	
$58 \cdot 895$	4		$458 \cdot 33$	
58.690	3		$459 \cdot 27$	
$58 \cdot 299$	5d		461.07	
$58 \cdot 198$	3	1111 Louis	$461 \cdot 54$	
58.046	7c	710 Her	$462 \cdot 24$	
57.824	70		$463 \cdot 26$	
$57 \cdot 589$	1		$464 \cdot 34$	
	1			
57.477	1	1 to more .	$464 \cdot 86$	
$57 \cdot 376$	1		$465 \cdot 33$	
$57 \cdot 115$	6		$466 \cdot 53$	
$56 \cdot 901$	6cd	the electronic split	$467 \cdot 52$	
$56 \cdot 749$	2		$468 \cdot 22$	
56.665	1	Au	$468 \cdot 61$	
$56 \cdot 607$	4	1000/100000	$468 \cdot 87$	
56.099	1		$471 \cdot 22$	
$55 \cdot 960$	4		$471 \cdot 86$	
$55 \cdot 827$	$\tilde{2}$		$472 \cdot 47$	
55.729	$\frac{1}{4}$		$472 \cdot 92$	
55.660	0	an estate a	$473 \cdot 24$	
55.535	3		$473 \cdot 82$	
$55 \cdot 396$		Para a second	$474 \cdot 46$	
	2		475.00	
$55 \cdot 278$	2	distance.		
55.080	$\frac{2}{2}$	995.0° 1094	$475 \cdot 92$	
$54 \cdot 721$	2d	······	477.57	
$54 \cdot 529$	3	an san tan	$478 \cdot 46$	
$54 \cdot 438$	1	*******	$478 \cdot 88$	
$54 \cdot 320$	5		$479 \cdot 42$	
$54 \cdot 159$	1	The second se	$480 \cdot 16$	
54.032	8		480.75	
53.933	0	-	$481 \cdot 21$	
$53 \cdot 860$	0		481.54	
53.756	3		$482 \cdot 02$	1

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

TRANSACTIONS SOCIETY

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$53:301$ 3 $484\cdot12$ $53:136$ 3 $484\cdot12$ $52:513$ 1 $487\cdot77$ $52:451$ 1 $488\cdot05$ $52:308$ 0 $489\cdot05$ $52:235$ $4e$ $489\cdot05$ $52:235$ $4e$ $489\cdot37$ $52:040$ 5 $489\cdot95$ $51:869$ 3 $492\cdot89$ $51\cdot017$ $1e$ $492\cdot89$ $51\cdot017$ $1e$ $492\cdot89$ $50:968$ $1e$ $495\cdot72$ 50.608 1 $496\cdot57$ 50.496 0 $497\cdot08$ $50:383$ 0 $496\cdot57$ 50.496 0 $50:5254$ $0d$	
$53\cdot 136$ 3 $484\cdot 88$ $52\cdot 513$ 1 $487\cdot 77$ $52\cdot 451$ 1 $488\cdot 05$ $52\cdot 308$ 0 $488\cdot 05$ $52\cdot 235$ $4c$ $489\cdot 05$ $52\cdot 235$ $4c$ $489\cdot 37$ $52\cdot 2040$ 5 $489\cdot 95$ $51\cdot 869$ 3 $490\cdot 74$ $51\cdot 403$ 0 $492\cdot 89$ $51\cdot 017$ $1c$ $494\cdot 68$ $50\cdot 968$ $1c$ $496\cdot 57$ $50\cdot 608$ 1 $496\cdot 57$ $50\cdot 606$ 1 $496\cdot 57$ $50\cdot 496$ 0 $497\cdot 60$ $50\cdot 254$ $0d$ $498\cdot 20$ $50\cdot 113$ $1d$ $498\cdot 85$ $49\cdot 92$ 1 $500\cdot 19$ $49\cdot 608$ $1c$ $501\cdot 19$ $49\cdot 608$ $1c$ $501\cdot 97$	
$52 \cdot 513$ 1 $487 \cdot 77$ $52 \cdot 451$ 1 $488 \cdot 05$ $52 \cdot 308$ 0 $488 \cdot 05$ $52 \cdot 305$ $4c$ $489 \cdot 05$ $52 \cdot 166$ $4c$ $489 \cdot 97$ $52 \cdot 040$ 5 $489 \cdot 95$ $51 \cdot 869$ 3 $490 \cdot 74$ $51 \cdot 403$ 0 $492 \cdot 89$ $51 \cdot 017$ $1c$ $494 \cdot 68$ $50 \cdot 968$ $1c$ $494 \cdot 95$ $50 \cdot 608$ $1c$ $497 \cdot 08$ $50 \cdot 791$ $3d$ $497 \cdot 08$ $50 \cdot 383$ 0 $497 \cdot 08$ $50 \cdot 383$ 0 $498 \cdot 85$ $49 \cdot 943$ 1 $498 \cdot 85$ $49 \cdot 943$ 1 $500 \cdot 19$ $49 \cdot 824$ 1 $501 \cdot 19$ $49 \cdot 688$ $1c$ $501 \cdot 19$ $49 \cdot 943$ $1c$ $501 \cdot 19$ $49 \cdot 943$ $1c$ $501 \cdot 19$ $49 \cdot 943$ $1c$ $501 \cdot 17$ $49 \cdot 688$ $1c$ $501 \cdot 17$ $49 \cdot 383$ $1c$ $502 \cdot 23$ $49 \cdot 922$ 1 $502 \cdot 17$ $49 \cdot 383$ $1c$ $502 \cdot 17$ $49 \cdot 884$ $2c$ $506 \cdot 02$ $48 \cdot 303$ 4 $508 \cdot 17$ $49 \cdot 884$ $2c$ $508 \cdot 10$ $47 \cdot 884$ $2c$ $508 $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$47 \cdot 389$ 0 $511 \cdot 46$	
$47 \cdot 239$ 1 $$ $512 \cdot 15$	
$46 \cdot 876$ 1 <i>d</i> - 513 \cdot 83	
$46 \cdot 718$ 2 - 514 \cdot 56	
46.588 4 - 515.16	
$46 \cdot 166$ 3 - 517 · 12	
$45 \cdot 996$ 1c $517 \cdot 90$	
$45 \cdot 885$ 1c $518 \cdot 42$	
$45 \cdot 746$ 0 - 519 \cdot 06	
$45 \cdot 518$ 1d - $520 \cdot 12$	
$45 \cdot 330$ 1 $520 \cdot 99$	
$45 \cdot 223$ 1 - 521 \cdot 48	
$45 \cdot 107$ 0 $522 \cdot 02$	
$44 \cdot 892$ 0 523 \cdot 02	
44.777 0 523.55	
$44 \cdot 588$ 0 <i>d</i> - 524 \cdot 43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
44.068 1 526.84	
$43 \cdot 909$ 1 $527 \cdot 58$	
$43 \cdot 810$ 1 528 \cdot 03	
$42 \cdot 844 \qquad \qquad 0vd \qquad \qquad$	

Table II (continued).

λ (Ι.Α.).	Int. (Tube).	Int. (Arc).	v (Vacuo).	Series.
$4642 \cdot 668$	10		$21533 \cdot 33$	
$42 \cdot 606$	1c	A. 10.000	$533 \cdot 62$	
$42 \cdot 457$	1	- 1000 CT	$534 \cdot 31$	
$42 \cdot 363$	1	- 1 1000000 (4	$534 \cdot 74$	
$42 \cdot 268$	1	*********	$535 \cdot 18$	
$42 \cdot 160$	1		$535 \cdot 68$	
$41 \cdot 246$	0	$w_{i,j,k} < w_{i,j} < 0$	$539 \cdot 92$	
41.014	1vd	Second Second	$541 \cdot 00$	
40.397	0	W-10.00	$543 \cdot 87$	
39.635	0	V constante VM	$547 \cdot 41$	
$39 \cdot 476$	0	- concerne	$548 \cdot 14$	
$39 \cdot 401$	0	Number of Witten	$548 \cdot 49$	

Table II (continued).

*=Head of a band.

TABLE III.

λ (Ι.Α.).	Int. (Tube).	v (Vacuo).	Series.
5635·525*	10	17739.67	P ₁ (13), P ₁ (14)
$35 \cdot 361$	10d	740.17	P_1 (15)
35.236	10	740.57	P_1 (16), P_2 (15)
$35 \cdot 124$	5vd	740.93	$P_{a}(15)$
$34 \cdot 885$	6vd	741.68	$P_{3}^{\circ}(16), P_{1}(17)$
$34 \cdot 626$	5d	$742 \cdot 49$	$P_{23}(17)$
$34 \cdot 515$	7	$742 \cdot 84$	$P_{1}(18)$
$34 \cdot 346$	5 <i>c</i>	743.38	$P_{2}(18)$
$34 \cdot 253$	6d	743.67	$P_{3}^{-}(18)$
$34 \cdot 146$	3c	744.01	
34.000	3	$744 \cdot 47$	$P_{1}(19)$
33.853	6	744.93	$P_{2}(19)$
$33 \cdot 763$	7	$745 \cdot 21$	$P_{3}(19)$
33.667	3	$745 \cdot 51$	
$33 \cdot 459$	5	$746 \cdot 17$	P ₁ (20)
33.209	8vd	$746 \cdot 96$	$P_{23}(20)$
$32 \cdot 776$	5	$748 \cdot 32$	$P_{1}(21)$
$32 \cdot 634$	3	748.77	P ₂ (21)
$32 \cdot 503$	7d	$749 \cdot 18$	P ₃ (21)
32.077	4d	750.53	P_1 (22)
$31 \cdot 849$	5d	751.24	$P_{23}(22)$
$31 \cdot 193$	3	753.31	$P_{1}(23)$
$31 \cdot 030$	5d	753.83	$P_{23}(23)$
30.309	4	756.10	$P_{1}(24)$
$30 \cdot 124$	5d	756.68	$P_{23}(24)$
$29 \cdot 456$	0	758.79	D (05)
$29 \cdot 277$	4	759.35	$P_1(25)$
29.092	4d	759.94	$P_{23}(25)$
$28 \cdot 421$	- 3	762.06	D (90)
$28 \cdot 219$	7	762.69	$P_1(26)$
28.028	7	$763 \cdot 30$	P ₂₃ (26)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	v (Vacuo).	Series.
$5627 \cdot 697$	0	$17764 \cdot 34$	R ₁ (3)
$27 \cdot 294$	0	765.61	$\mathbf{n}_{1}(0)$
$26 \cdot 989$	3	766.57	$P_{1}(27)$
$26 \cdot 822$	$5 \\ 5d$		
$26 \cdot 384$	1 $3a$ 1	$\frac{767\cdot10}{768\cdot48}$	$P_{23}(27), R_2(3)$
$25 \cdot 766$			$\begin{array}{c} \mathbf{R}_{1} (4) \\ \mathbf{D}_{1} (2) \mathbf{D}_{2} (98) \end{array}$
	3	770.44	$R_3(3), P_1(28)$
$25 \cdot 580$	5d	771.03	$R_{2}(4), P_{23}(28)$
$24 \cdot 914$	0vd	$773 \cdot 13$	$\mathbf{R}_{1}(5)$
$24 \cdot 475$		774.52	$\mathbf{R}_{3}(4)$
$24 \cdot 386$		774.80	$P_1(29)$
$24 \cdot 203$	5d	$775 \cdot 38$	$P_{23}(29), R_{2}(5)$
$23 \cdot 254$	6d	$778 \cdot 38$	$R_{3}(5), R_{1}(6)$
$22 \cdot 972$	1	$779 \cdot 27$	$P_{1}(30)$
$22 \cdot 804$	2	$779 \cdot 80$	$P_{23}(30)$
$22 \cdot 714$	2	780.08	R ₂ (6)
$21 \cdot 867$	3	$782 \cdot 76$	R ₃ (6)
$21 \cdot 687$	2	$783 \cdot 33$	$R_1(7)$
$21 \cdot 403$	0	$784 \cdot 23$	$P_{1}(31)$
$21 \cdot 181$	4vd	$784 \cdot 93$	$P_{23}(31), R_{2}(7)$
$20 \cdot 422$	4	787.33	$R_3(7)$
19.904	4	$788 \cdot 97$	$\mathbf{R}_{1}(8)$
19.829	1	$789 \cdot 21$	$P_1(32)$
$19 \cdot 667$	3	789.72	$P_{23}^{1}(32)$
$19 \cdot 493$		$790 \cdot 27$	$\mathbf{R}_{2}^{23}(8)$
$19 \cdot 282$	3 2	790.94	
$18 \cdot 859$	5	$792 \cdot 28$	$R_{3}(8)$
18.196	4	$794 \cdot 38$	$\begin{array}{c} \mathbf{R_1}(9) \\ \mathbf{R_2}(9) \end{array}$
18.084	$\frac{1}{0}$	794.73	$P_{1}(33)$
$10 001 \\ 17.922$	0d	$795 \cdot 25$	$P_{23}(33)$
17.763	4	$795 \cdot 75$	$R_{2}^{1}(9)$
$17 \cdot 208$	5	797.51	$R_{2}(9)$ $R_{3}(9)$
16.820		798.74	IU ³ (<i>D</i>)
$16 \cdot 289$	5d	$800 \cdot 42$	R_1 (10), P_1 (34)
10 209 $16 \cdot 190$	1 $3a$ 1		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$15 \cdot 938$		800.74	
$15 \cdot 353$ $15 \cdot 463$	5	801.53	$\begin{array}{c c} & R_2 (10) \\ & R_3 (10) \end{array}$
	5	803.04	
$14 \cdot 412$ $14 \cdot 225$	5	$806 \cdot 37$	R_1 (11), P_1 (35)
	4	806.97	$P_{23}(35)$
14.054	5	$807 \cdot 51$	$R_{2}(11)$
13.625	6	808.87	\mathbf{R}_{3} (11)
12.359	6	812.88	\mathbf{R}_{1} (12)
12.051	6	$813 \cdot 86$	$R_{2}(12)$
11.678	6	815.05	$R_{s}(12)$
10.307	6c	$819 \cdot 40$	R_1 (13), P_1 (37)
10.117		820.00	$P_{23}(37)$
09.983	6	$820 \cdot 43$	$R_{2}(13)$
09.668	6	$821 \cdot 43$	$R_{3}(13)$
$08 \cdot 109$	6	$826 \cdot 38$	R_{1} (14)
$07 \cdot 843$	6	$827 \cdot 23$	$R_{2}(14)$
$07 \cdot 538$	6	$828 \cdot 20$	$R_{3}(14)$
$07 \cdot 058$	0	829.72	
$05 \cdot 898$	6	$833 \cdot 42$	R_1 (15)
$05 \cdot 608$	6	$834 \cdot 34$	$R_{2}(15)$
$05 \cdot 353$	6	835.15	\mathbf{R}_{3}^{2} (15)
$04 \cdot 911$	3	836.56	

Table III (continued).

VOL. CCXXVI.-A.

 $2~{
m G}$

213

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

Table III (continued).

λ (Ι.Α.).	Int. (Tube).	v (Vacuo).	Series.
$5603 \cdot 534$	5	$17840 \cdot 95$	R ₁ (16)
$03 \cdot 292$	5	841.72	$R_{2}(16)$
$03 \cdot 055$	5	$842 \cdot 47$	$R_{3}(16)$
$02 \cdot 194$	0	$845 \cdot 21$	103 (10)
$02 \cdot 134$ $01 \cdot 177$	6	$848 \cdot 45$	$R_{1}(17)$
00.901	6	849.33	$R_{1}(17)$ $R_{2}(17)$
00.201 00.707	7d	$849 \cdot 95$	$R_{3}(17)$
$5598 \cdot 818$		855.97	$10_3(11)$
	0 5		R ₁ (18)
98·639	5	856.54	
$98 \cdot 422$	5	$857 \cdot 23$	$R_2(18)$
$98 \cdot 211$	5	$857 \cdot 91$	$R_{3}(18)$
$96 \cdot 112$	5	864.60	$R_1(19)$
$95 \cdot 873$	5	865.37	$R_2(19)$
95.698	5	865.93	R ₃ (19)
$95 \cdot 418$	3	$866 \cdot 82$	
$93 \cdot 605$	0	$872 \cdot 61$	D (20)
$93 \cdot 412$	5	$873 \cdot 23$	$R_{1}(20)$
$93 \cdot 212$	5	873.86	R ₂ (20)
$93 \cdot 043$	5	$874 \cdot 40$	R_{3} (20)
$91 \cdot 373$	0	879.74	
$91 \cdot 173$	1	880.38	
90.729	4	881.80	$R_{1}(21)$
$90 \cdot 511$	4	$882 \cdot 50$	$R_{2}(21)$
90.363	4	$882 \cdot 97$	$R_{3}(21)$
88.782	0	888.03	
$88 \cdot 111$	0	890.18	
$87 \cdot 875$	4	890.93	$R_{1}(22)$
87.685	4	$891 \cdot 54$	$\mathbf{R}_{2}^{1}(22)$
$87 \cdot 529$	4	$892 \cdot 04$	$R_3(22)$
85.724	1	$897 \cdot 83$	$P_{2}'(15)$?
$85 \cdot 491*$	10	898.57	$\mathbf{P_{1}'}^{2}$ (16) ?
$85 \cdot 248$	7c	$899 \cdot 35$	$P_{2}'(16)$?
$85 \cdot 199$	9cd	$899 \cdot 51$	$P_1'(17)$?, $P_3'(16)$
85.019	6c	900.08	$P_{2}'(17), R_{1}(23)$
84.887	8	900.51	$P_{3}'(17), R_{2}(23)$
84.734	9	$901 \cdot 00$	$R_3 (23)$
84.580	7	$901 \cdot 49$	
84.414	5	902.03	$P_{1}'(18) P_{2}'(18)$
$84 \cdot 299$	5	$902 \cdot 39$	$P_{3}'(18)$
$84 \cdot 299$ $84 \cdot 106$	55vd	903.01	r ³ (ro)
		$903 \cdot 51$	$P_{1}'(19)$
83.952	2c		$\begin{array}{c} \mathbf{L}_{1} (\mathbf{L} \mathbf{\partial}) \\ \mathbf{D} \mathbf{D} \mathbf{D} \end{array}$
83.838	30	903.87	$P_{23}'(19)$
83.577	5d	904.71	$P_1'(20)$
$83 \cdot 374$	5d	$905 \cdot 36$	$P_{23}'(20)$
83.071	$\frac{1d}{2}$	906.33	
$82 \cdot 991$	6c	906.59	D / (21)
82.820	3	$907 \cdot 14$	$P_{1}'(21)$
82.730	5	$907 \cdot 42$	P ₂₃ ' (21)
$82 \cdot 402$	7	$908 \cdot 48$	
$82 \cdot 299$	5	$908 \cdot 81$	
$82 \cdot 112$	3	$909 \cdot 41$	$P_{1}'(22)$
$82 \cdot 042$	5	$909 \cdot 63$	P_{23}' (22), R_1 (24)
$81 \cdot 841$	2	$910 \cdot 28$	$R_{2}(24)$
$81 \cdot 698$	6	910.73	$R_{3}(24)$
$81 \cdot 509$	3	911.34	

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
$5581 \cdot 357$	3	$17911 \cdot 83$	P ₁ ' (23)
$81 \cdot 269$	3	$912 \cdot 11$	$P_{23}'(23)$
81.015	0	$912 \cdot 93$	1 23 (20)
80.495	4c	$912 \cdot 60$ $914 \cdot 60$	$P_{1}'(24)$
80.439	4c	914·78	$P_{23}'(24)$
79.694	2	$917 \cdot 17$	1_{23} (21)
79.555	2	$917 \cdot 61$	D / (95)
79.481	$\frac{2}{2}$	917.01 917.85	$P_1'(25)$
79.019	3		$P_{23}'(25)$
78.805	$\frac{3}{2}$	919.34	$R_1 (25)$
78.703	$\frac{2}{4d}$	920.02	$R_{2}(25)$
		920.35	$R_3(25), P_1'(26)$
$78 \cdot 472$	3d	$921 \cdot 09$	$P_{23}'(26)$
78.043	0	$922 \cdot 47$	
77.734	0	$923 \cdot 46$	D ((07)
77.549	1	924.06	$P_1'(27)$
77·397	2c	$924 \cdot 55$	P ₂₃ ' (27)
$77 \cdot 339$	2c	$924 \cdot 74$	
76.384	0	$927 \cdot 80$	
$76 \cdot 191$	2d	$928 \cdot 42$	$P_{23}'(28)$
$75 \cdot 842$	4	$929 \cdot 55$	R_1 (26)
$75 \cdot 684$	3	$930 \cdot 05$	$R_{2}(26)$
$75 \cdot 540$	2	$930 \cdot 52$	$R_{3}(26)$
$75 \cdot 102$	3	$931 \cdot 93$	$R_{1}'(5)$
$74 \cdot 924$	2vd	$932 \cdot 50$	
$74 \cdot 623$	0	$933 \cdot 47$	
$74 \cdot 406$	1	$934 \cdot 16$	$R_{2}'(5)$
$73 \cdot 752$	Od	$936 \cdot 27$	
$73 \cdot 548$	3d	$936 \cdot 92$	$R_{3}'(5), R_{1}'(6)$
$73 \cdot 428$	1	$937 \cdot 31$	
$72 \cdot 949$	2d	$938 \cdot 85$	$R_{2}'(6)$
$72 \cdot 679$	1	$939 \cdot 72$	$R_{1}(27)$
$72 \cdot 506$	1c	$940 \cdot 28$	$R_2(27)$
$72 \cdot 401$	1c	$940 \cdot 62$	$R_{3}^{2}(27)$
$72 \cdot 127$	4	$941 \cdot 50$	$R_{3}'(6)$
$71 \cdot 991$	2	$941 \cdot 94$	$R_{1}'(7)$
$71 \cdot 458$	4	$943 \cdot 65$	$R_{2}'(7)$
70.730	2c	946.00	$R_{3'}^{2}(7)$
70.634	0	$946 \cdot 31$	103 (1)
70.287	3	$947 \cdot 42$	$R_{1}'(8)$
$69 \cdot 852$	3	$948 \cdot 83$	$R_{2'}(8)$
$69 \cdot 202$	4	$950 \cdot 92$	$R_{3}'(8)$
69.064	1	$951 \cdot 37$	103 (0)
$68 \cdot 621$	3	$951 \cdot 91$ $952 \cdot 80$	$R_{1}'(9)$
$68 \cdot 193$	3	952.00 954.18	$R_{1}'(9)$ $R_{2}'(9)$
$67 \cdot 621$	3	956.02	$R_{2}'(9)$ $R_{3}'(9)$
$67 \cdot 313$		950.02 957.01	$\mathbf{n}_3(\mathbf{o})$
66.783		957.01 958.72	B / /10)
$66 \cdot 427$	3		$R_1'(10)$
66.061		959·87 061.05	$R_{2}'(10)$
$65 \cdot 940$	1	961.05	$R_1(28)$
$65 \cdot 940$ $65 \cdot 772$	30	$961 \cdot 44$	$R_2(28), R_3'(10)$
$63 \cdot 772 \\ 64 \cdot 972$	$\frac{3c}{4}$	$961 \cdot 99$	$R_{3}(28)$
	4	964.57	$R_{1}'(11)$
$64 \cdot 601$	4	965.77	$R_{2}'(11)$
$64 \cdot 171$	4	$967 \cdot 15$	$R_{3}'(11)$

Table III (continued).

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

2 G 2

Table III (continued).

λ (I.A.).	Int. (Tube).	ν (Vacuo).	Series.
5569 009		17070 00	D'(10)
5562.993	3	$17970 \cdot 96$	$R_{1'}(12)$
$62 \cdot 684$		$971 \cdot 95$	$R_{2}'(12)$
$62 \cdot 297$	4d	$973 \cdot 20$	$R_{3}'(12)$
$61 \cdot 286$	0	$976 \cdot 47$	
61.034	3	$977 \cdot 29$	$R_{1}'(13)$
60.708	3	978.34	$R_{2}'(13)$
60.590	0	978.72	
60.368	4	$979 \cdot 44$	$R_{3}'(13)$
59.056	$\hat{2}$	983.68	
58.902	$\frac{2}{3c}$	$984 \cdot 18$	$R_{1}'(14)$
58.626	3	985.07	$R_{2'}^{(11)}$
	0		
58.315	3	986.08	$R_{3}'(14)$
57.480	2	988.79	D ((15)
56.776	4	991.06	$R_1'(15)$
$56 \cdot 482$	4	$992 \cdot 02$	$R_{2}'(15)$
$56 \cdot 229$	4	$992 \cdot 83$	$R_{3}'(15)$
$55 \cdot 933$	1	$993 \cdot 79$	
$55 \cdot 406$	1d	$995 \cdot 50$	
$55 \cdot 192$	0d	$996 \cdot 19$	
$54 \cdot 506$	3c	$998 \cdot 41$	$R_{1}'(16)$
$54 \cdot 244$	3	$999 \cdot 26$	$R_{2}^{(10)}$
53.997	3	18000.07	$R_{3}'(16)$
53.036	Od	003.18	103 (10)
			D (17)
$52 \cdot 216$	3	$005 \cdot 84$	$R_{1'}(17)$
$51 \cdot 954$	3	$006 \cdot 69$	$R_{2'}(17)$
51.738	3	$007 \cdot 39$	$R_{3}'(17)$
$51 \cdot 615$	1c	$007 \cdot 79$	
50.917	1	$010 \cdot 05$	
50.351	1.	$011 \cdot 89$	
49.781	3	$013 \cdot 74$	$R_{1}'(18)$
49.562	3	$014 \cdot 45$	$R_{2}'(18)$
49.347	3	$015 \cdot 15$	$R_{3}'(18)$
49.084	0	$016 \cdot 00$	
$47 \cdot 917$	2	$019 \cdot 79$	
47.357	3	$021 \cdot 61$	$R_{1}'(19)$
47.099	3.	$021 \cdot 45$	$R_{2}'(19)$
	3	$022 \cdot 10 \\ 023 \cdot 04$	$R_{3}'(19)$
$46 \cdot 915$			TA3 (TO)
$45 \cdot 655$	0	$027 \cdot 14$	
$44 \cdot 975$	0	$029 \cdot 35$	D / (90)
44.753	2	030.07	$R_{1'}(20)$
$44 \cdot 565$	2	030.68	$R_{2'}(20)$
$44 \cdot 369$	2	$031 \cdot 32$	$R_{3}'(20)$
$43 \cdot 618$	0	$033 \cdot 76$	
$42 \cdot 644$	0	$036 \cdot 94$	
$42 \cdot 176$	2	$038 \cdot 46$	$R_{1}'(21)$
$41 \cdot 942$	2c	$039 \cdot 22$	$R_{2}'(21)$
41.780	$\overline{2}$	039.75	$\mathbf{R}_{3'}(21)$
40.681*	$\frac{2}{4vd}$	$043 \cdot 32$	$P_1''(16), P_2''(14)$
		$043 \cdot 32$ $044 \cdot 11$	$P_{2}''(16), P_{2}''(15)$
40.439	9d		p''(17)
40.193	8	$044 \cdot 91$	$\begin{array}{c} P_{1}^{"'}(17) \\ P_{23}^{"'}(17), P_{1}^{"'}(18) \end{array}$
39.940	5d	045.74	$\begin{array}{c c} & \mathbf{L}_{23} & (11), \mathbf{L}_{1} & (18) \\ & \mathbf{D} & '' & (10) \end{array}$
39.709	5d	$046 \cdot 49$	$\begin{array}{c} P_{23}^{23''}(18) \\ P_{1}^{''}(19) ? \end{array}$
$39 \cdot 562$	3d	$046 \cdot 97$	$P_1''(19)$?
$39 \cdot 427$	3c	$047 \cdot 41$	$\mathbf{R_1'}(22)$
39.337	3	$047 \cdot 70$	$P_{23}''(19)$

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	ע (Vacuo).	Series.
$5539 \cdot 211$	3	$18048 \cdot 11$	R ₂ ' (22)
39.066	3	$048 \cdot 59$	$R_{3'}^{(22)}$
38.747	$\frac{3}{2}$	049.63	$P_{23}''(20)$
38.611		050.07	1_{23} (20)
	0		D // (91)
$38 \cdot 478 \\ 38 \cdot 234$	0	$050 \cdot 50$ $051 \cdot 30$	$\begin{array}{c} P_{1}'' (21) \\ P_{23}'' (21) \\ P_{1}'' (22) ? \\ P_{23}'' (22) ? \end{array}$
	3vd		Γ_{23} (21) D'' (99) 2
$37 \cdot 876$	1	$052 \cdot 46$	$P_1(22)$?
$37 \cdot 602$	$\frac{3d}{2}$	$053 \cdot 36$	Γ_{23} (22) :
$37 \cdot 380$	0	054.08	D // (99) /
$37 \cdot 130$	0	$054 \cdot 90$	$P_1''(23)$?
36.934	. 1	$055 \cdot 53$	P ₂₃ " (23) ?
$36 \cdot 826$	1	$055 \cdot 89$	
$36 \cdot 693$	1	$056 \cdot 32$	$R_{1}'(23)$
$36 \cdot 464$	1	$057 \cdot 07$	$R_{2}'(23)$
$36 \cdot 339$	3	$057 \cdot 47$	$R_{3}'(23) P_{23}''(24)$?
$36 \cdot 103$	3	$058 \cdot 24$	P ₂₃ " (24) ?
$34 \cdot 761$	0	$062 \cdot 62$	
$34 \cdot 551$	0	$063 \cdot 31$	
$34 \cdot 312$	Odc	$064 \cdot 09$	
$33 \cdot 770$	2vd	$065 \cdot 86$	$R_{1}'(24)$
$33 \cdot 577$	50	$066 \cdot 49$	$R_{23}'(24)$
$32 \cdot 370$	0	$070 \cdot 43$	
$32 \cdot 164$	1vd	$071 \cdot 10$	
30.876	1	$075 \cdot 31$	R ₁ ' (25)
30.682		$075 \cdot 95$	$R_{2}'(25)$
30.575	1	$076 \cdot 30$	$R_{3}'(25)$
$29 \cdot 955$	0	$078 \cdot 32$	
29.730	1d	$079 \cdot 06$	
$28 \cdot 984$	0	$081 \cdot 50$	
$28 \cdot 841$	0	$081 \cdot 96$	·
$28 \cdot 538$	0	$082 \cdot 95$	
$28 \cdot 404$	0	083.39	
$27 \cdot 821$	1d	085.30	$R_{1}'(26)$
$27 \cdot 547$	2vd	$086 \cdot 20$	$R_{23}'(26)$
$27 \cdot 175$	0	$087 \cdot 42$	
$26 \cdot 975$	$\ddot{1}d$	088.07	
$26 \cdot 216$	$\vec{0}d$	090.55	
25.783	0	$091 \cdot 97$	
$25 \cdot 601$	1 1	$091 \cdot 57$ $092 \cdot 57$	
$25 \cdot 445$	1	093.08	
$29 \cdot 110$ $24 \cdot 763$	3	$095 \cdot 31$	
$24 \cdot 103$ $24 \cdot 593$	2	095.87	
$24 \cdot 503$	2		
$24 \cdot 303$ $24 \cdot 212$	2 0	$096 \cdot 16$	
$23 \cdot 879$	$\begin{array}{c} 0\\ 2\end{array}$	$097 \cdot 11 \\ 098 \cdot 21$	
$23 \cdot 521$	1 1		
$\frac{23\cdot 521}{23\cdot 241}$		099·38	
$23 \cdot 241$ $22 \cdot 405$	1 $2d$	100.30 102.04	
$22 \cdot 405$ $22 \cdot 162$	10	103.04 103.83	
$22 \cdot 102$ $21 \cdot 603$	10 2	103.83 105.67	
$21 \cdot 603$ $21 \cdot 406$		105.67	
$21 \cdot 400$ $21 \cdot 304$	1	106.31	
$21 \cdot 304$ $20 \cdot 712$		106.65	
20.012 20.050	0	108.59 110.76	
$\frac{20\cdot050}{19\cdot932}$	0	110.76	
19.932	$\begin{vmatrix} 1d\\2 \end{vmatrix}$	111.15	$ R_1''(12) $
10.100	1 2	$114 \cdot 91$	I_{1} I_{1} I_{2}

Table III (continued).

Table III (continued).

λ (I.A.).	Int. (Tube).	ν (Vacuo).	Series.
5518.366	2	$18116 \cdot 29$	R ₂ " (12)
18.134	$\begin{array}{c}2\\2\end{array}$	117.05	$R_{2}^{(12)}$ $R_{3}^{"}(12)$
16.864	1c	$111 \cdot 000$ $121 \cdot 22$	$\mathbf{R}_{3}^{(12)}$
16.501	1	$121 \cdot 22$ $122 \cdot 39$	$\begin{array}{c} R_{1}^{"'}(13) \\ R_{2}^{"'}(13) \end{array}$
16.339	1	$122 \cdot 94$	$R_{2}^{(13)}$ R_{3}'' (13)
$10^{-}33^{-}$ $14 \cdot 884$	$\frac{1}{2d}$	$122 \cdot 54$ $127 \cdot 73$	D''(14) 2
	$\frac{2a}{2}$		$\begin{array}{c} R_{1}^{''}(14) ? \\ R_{23}^{''}(14) \end{array}$
$14 \cdot 487$		129.03	
12.794	1	134.60	$R_{1}^{\tilde{''}}(15)'?$
12.477	1	135.64	R_{23}'' (15)
11.805	0	137.85	
11.688	0	$138 \cdot 24$	
11.451	0d	139.02	D // (16)
10.601	1	$141 \cdot 81$	$R_1''(16)$
10.301	1	$142 \cdot 80$	$R_{2}''(16)$
09.931	1	144.02	R_{3}'' (16)
08.602	1	$148 \cdot 40$ 140.00	D // (17)
$08 \cdot 420$	2	149.00	$R_1''(17)$
08.137	1	149.93	$\begin{array}{c} R_{2}''(17) \\ R_{3}''(17) \\ R_{1}''(18) \\ \end{array}$
07.834		150.93	$R_{3}^{*}(17)$
$06 \cdot 042$	1	156.83	$R_1^{(18)}$
05.795	1	157.65	$R_{2''}^{*''}(18)$
$05 \cdot 542$	1	158.48	R_{3}'' (18)
$04 \cdot 671$		$161 \cdot 36$	
$04 \cdot 510$	Ovd	$161 \cdot 89$	D // (10)
03.731	1	$164 \cdot 46$	$R_1''(19)$
$03 \cdot 465$	1	$165 \cdot 34$	$R_{2''}^{1''}(19)$
$03 \cdot 244$	1	166.07	R_{3}'' (19)
$01 \cdot 911*$	3	170.47	
01.718	3	$171 \cdot 11$	
$01 \cdot 581$	9	171.56	
$01 \cdot 415$	6	$172 \cdot 11$	D // (20)
$01 \cdot 230$		$172 \cdot 72$	R_{1}'' (20)
$01 \cdot 133$	1	173.04	D // (20)
00.979	7	173.55	$R_{2''}(20)$
00.804	4	174.13	$R_{3}''(20)$
00.597	4	$174 \cdot 81$	
00.374	1	175.55	
00.228	0	176.03	
00.071	0	176.55	
$5499 \cdot 924$	0	177.03	
99·496	0	178.45	
99.312		179.05	
99·197		$179 \cdot 44$	D // (01)
98·723	1	181.00	$R_1''(21)$
$98 \cdot 502$	0	181.73	$R_{2}''(21)$
98.331	0	$182 \cdot 30$	$R_{3}''(21)$
$98 \cdot 172$	0	$182 \cdot 83$	
97·904	1d	183.71	
$97 \cdot 354$	0	185.53	
97.174	1d	$186 \cdot 13$	
96 • 4 91	0d	$188 \cdot 38$	
$96 \cdot 291$	0	189.05	D // (00)
$96 \cdot 104$	0	189.67	$R_1''(22)$
$95 \cdot 896$	0	190.35	$R_2''(22)$
$95 \cdot 687$	Ovd	$191 \cdot 05$	$R_{s}''(22)$

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (I.A.).	Int. (Tube).	v (Vacuo).	Series.
5494.746	0	$18194 \cdot 16$	
94.591	0	194.67	
$94 \cdot 342$	ů ů	$195 \cdot 50$	
93.491	ů ů	$198 \cdot 31$	$R_{1}''(23)$
$93 \cdot 260$	Ő	199.08	R_{a}'' (23)
$93 \cdot 120$	Ő	$199 \cdot 54$	$R_{2}''(23) R_{3}''(23)$
90.702	$\mathbf{\tilde{1}}d$	207.56	$R_1''(24)$
90.465	0	$208 \cdot 35$	$R_{2''}^{1''}(24)$
90.310	1	$208 \cdot 86$	$R_{3}''(24)$
90.031	1	$209 \cdot 79$	3 (7
$89 \cdot 656$	1vd	$211 \cdot 03$	$R_2'''(6)$
$89 \cdot 250$	0	$212 \cdot 38$	2 ()
$88 \cdot 829$	0	$213 \cdot 77$	$R_{1}^{\prime\prime\prime}$ (7)
88.307	1	$215 \cdot 51$	$R_{2}^{1}'''(7)$
$87 \cdot 933$	1	216.75	$R_{1}^{"}(25)$
87.707	0	$217 \cdot 50$	$\begin{array}{c} \mathbf{R}_{2}^{'''}(7) \\ \mathbf{R}_{2}^{'''}(25) \\ \mathbf{R}_{23}^{'''}(25) \\ \mathbf{R}_{23}^{'''}(25) \end{array}$
87.543	0	218.04	R_{3}^{2} (7)
$87 \cdot 269$	0	$218 \cdot 95$	$\begin{array}{c} R_{3}^{'''}(7) \\ R_{1}^{'''}(8) \\ R_{2}^{'''}(8) \end{array}$
86.784	0	220.56	$R_{2}^{'''}(8)$
$86 \cdot 136$	0	$222 \cdot 72$	$R_{3}^{\prime\prime\prime\prime}$ (8)
$85 \cdot 734$	1	$224 \cdot 05$	$R_{1}^{'''}(9)$
$85 \cdot 529$	0	$224 \cdot 73$	
$85 \cdot 246$	0	$225 \cdot 67$	$R_{2}^{\prime\prime\prime}$ (9)
$85 \cdot 010$	0	$226 \cdot 46$	$R_{1}^{"}(26)$
$84 \cdot 658$	1d	$227 \cdot 62$	$\begin{array}{c} R_{1}^{"'}(26) \\ R_{23}^{"'}(26), R_{3}^{'''}(9) \end{array}$
84.019	0	$229 \cdot 75$	$\begin{array}{c} R_{1}^{'''}(10) \\ R_{2}^{'''}(10) \\ R_{3}^{'''}(10) \\ R_{3}^{'''}(10) \\ \end{array}$
$83 \cdot 634$	1	$231 \cdot 03$	$R_{2}^{'''}(10)$
83.100	1	$232 \cdot 81$	$R_{a}^{'''}(10)$
$82 \cdot 336$	1	$235 \cdot 35$	$= R_1'''$ (11)
$81 \cdot 903$	1	$236 \cdot 79$	$R_{2}^{\prime\prime\prime}$ (11)
81.750	1	$238 \cdot 30$	$\begin{array}{c} \mathbf{R_{2}^{\prime\prime\prime\prime}} (11) \\ \mathbf{R_{23}^{\prime\prime\prime}} (27) ? \end{array}$
$81 \cdot 477$	1	$238 \cdot 20$	$R_{2}^{\prime\prime\prime}$ (11)
80.491	1	$241 \cdot 48$	$\begin{array}{c} R_{1}^{'''}(12) \\ R_{2}^{'''}(12) \end{array}$
80.168	1	$242 \cdot 56$	R_2''' (12)
79.739	1	$243 \cdot 99$	$R_{3}^{-\prime\prime\prime}$ (12)
$78 \cdot 942$	1d	$246 \cdot 64$	
78.686	1d	$247 \cdot 49$	R_1''' (13)
$78 \cdot 329$	1d	$248 \cdot 68$	$R_{2}^{'''}$ (13)
$77 \cdot 961$	1	$249 \cdot 91$	$\begin{array}{c} R_{3}^{'''}(13) \\ R_{1}^{'''}(14) \end{array}$
76.709	. 0	$254 \cdot 08$	$R_1'''(14)$
$76 \cdot 421$	0	$255 \cdot 04$	$R_{a}^{\prime\prime\prime}$ (14)
76.080	1	$256 \cdot 18$	$\begin{array}{c} R_{3}^{2}'''(14) \\ R_{23}'''(29) \end{array}$
$75 \cdot 231$	2d	$259 \cdot 01$	$R_{23}''(29)$
74.769	0	260.55	R_{1}''' (15)
74.448	0	$261 \cdot 62$	$ \begin{array}{c} R_{2}^{'''} (15) \\ R_{3}^{'''} (15) \end{array} $
$74 \cdot 172$	0	$262 \cdot 54$	$R_{3}^{\prime\prime\prime}$ (15)
72.678	1d	$267 \cdot 53$	$R_1'''(16)$
$72 \cdot 401$	1d	$268 \cdot 45$	$R_{2}^{\prime\prime\prime}$ (16)
$72 \cdot 112$	0	$269 \cdot 41$	$R_{3}'''(16)$
$71 \cdot 885$	0	$270 \cdot 18$	
70.745	0	$273 \cdot 98$	
70.593		$274 \cdot 49$	$\frac{R_1'''(17)}{R_2'''(17)}$
70.282*		$275 \cdot 53$	

Table III (continued).

*=Band head.

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

 $\mathbf{219}$

TABLE IV.

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
$6191 \cdot 211*$		16147 47	D (12) D (10)
	2	$16147 \cdot 47$	P_1 (13), P_1 (12)
91.082		$147 \cdot 81$	P_1 (14), P_2 (13)
90.727	7vd	$148 \cdot 73$	P_{23} (14), P_{2} (10
90.592	7	$149 \cdot 09$	P_1 (15), P_3 (10)
90.415	6	$149 \cdot 55$	P_2 (15), P_2 (9)
90.204	6d	$150 \cdot 10$	$P_1(16), P_3(15)$
V. Diff.			$P_{23}(16), P_{12}(8)$
89.795	3	$151 \cdot 27$	$P_{3}(8)$?
89.575	5	$151 \cdot 84$	$P_1(17)$
89.382	2	$151 \cdot 04$ $152 \cdot 29$	
	$\frac{2}{2}$		$P_2(17)$
$89 \cdot 243$		152.60	$P_{3}(17)$
$88 \cdot 932$	2vd	$153 \cdot 42$	$P_{1}(18)$
$88 \cdot 600$	2vd	$154 \cdot 28$	P_{23} (18)
$88 \cdot 272$	2d	$155 \cdot 14$	
88.066	10	$155 \cdot 68$	$P_{1}(19)$
$87 \cdot 891$	1	$156 \cdot 13$	$P_{2}^{(19)}$
87.770	1	156.45	$P_{3}^{2}(19)$
87.167	1	158.02	
			$P_1(20)$
86.949	20	158.60	$P_{2}(20)$
$86 \cdot 882$	2c	158.77	$P_{3}(20)$
$86 \cdot 115$	2	160.77	$P_1(21)$
85.933	2	$161 \cdot 25$	$P_{2}(21)$
$85 \cdot 843$	2	$161 \cdot 48$	$P_{3}(21)$
$84 \cdot 975$	2	$163 \cdot 75$	$P_{1}(22)$
84.739	$\overline{2}c$	164.37	$P_{2}^{(22)}$
84.686	$\frac{2c}{2c}$	$164 \cdot 51$	$P_{3}^{(22)}$
83.653	0	$167 \cdot 21$	$D_{3}(22)$
			$P_1(23)$
$83 \cdot 497$	20	$167 \cdot 62$	$P_{2}(23)$
$83 \cdot 402$	1c	$167 \cdot 86$	$P_{3}(23)$
$82 \cdot 292$	0	170.77	$P_{1}(24)$
$82 \cdot 032$	1	$171 \cdot 45$	P ₂₃ (24)
80.747	0	$174 \cdot 81$	$P_1(25)$
80.521	1	$175 \cdot 40$	$P_{23}(25)$
$79 \cdot 145$	1	179.00	$P_{1}^{20}(26)$
$78 \cdot 926$	1	179.58	$P_{23}(26)$
77.363	0	183.67	$P_1(27)$
			$D_{1}(21)$
77.183		$184 \cdot 14$	$P_{23}(27)$
$75 \cdot 481$	2	$188 \cdot 60$	$P_1(28)$
$75 \cdot 281$	2	$189 \cdot 13$	P ₂₃ (28)
$74 \cdot 567$	0	$191 \cdot 00$	
$73 \cdot 693$	0	$193 \cdot 29$	
$73 \cdot 289$	0d	$194 \cdot 35$	P ₂₃ (29)
73.025	0	195.04	20 ()
72.510	0 0	$196 \cdot 39$	
72.510 71.716		190.39 198.48	
			D (90)
$71 \cdot 432$	0	$199 \cdot 22$	$P_{1}(30)$
$71 \cdot 204$	0	$199 \cdot 82$	P ₂₃ (30)
70.858	1	200.73	
70.348	1	$202 \cdot 07$	
$69 \cdot 648$	1d	$203 \cdot 91$	
$68 \cdot 965$	0d	$205 \cdot 70$	
$68 \cdot 471$	1	207.00	R ₁ (10)
68.019	$\frac{1}{1d}$	$208 \cdot 19$	$R_{2}(10)$
$67 \cdot 455$	1	$209 \cdot 67$	$R_{3}(10)$
66.069	1	209.07 213.31	$R_{3}(10)$ $R_{1}(11)$

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
6165.639	1	$16214 \cdot 44$	R ₂ (11)
65.124	1	215.80	$R_{3}(11)$
$63 \cdot 475$	2	$210 \cdot 00$ $220 \cdot 14$	$R_{1}(12)$
63.105		$220 \cdot 14$ $221 \cdot 11$	$R_{1}(12)$ $R_{2}(12)$
62.656	$\frac{2}{2}$	$221 \cdot 11$ $222 \cdot 29$	$R_{3}(12)$
60.893		$226 \cdot 93$	$R_{1}(12)$
60.497	$\frac{1}{2}$	$220 \cdot 95$ $227 \cdot 98$	$R_{2}(13)$
60.087	$\frac{2}{2}$	229.06	$R_{3}(13)$
58.063		234.39	$R_{1}(14)$
57.741	1	$235 \cdot 235$	$R_{2}(14)$
57.374	1	$236 \cdot 21$	$R_{3}(14)$
$55 \cdot 250$		$230 \cdot 21$ 241 · 81	$R_{1}(15)$
$53 \cdot 250$ $54 \cdot 902$	2	241.01 242.73	$R_{2}(15)$
54.502 54.578	$\frac{2}{2}$	$242 \cdot 13$ $243 \cdot 58$	$R_{3}(15)$
$52 \cdot 225$		243·58 249·80	$R_3 (15) R_1 (16)$
$52 \cdot 225$ $51 \cdot 913$	1	250.62	$R_{1}(10)$ $R_{2}(16)$
$51 \cdot 626$		250.02 251.38	$R_{3}(16)$
49.309	1	$251 \cdot 50$ $257 \cdot 50$	$R_{3}(10)$ $R_{1}(17)$
48.854	1	258.70	$R_{2}(17)$
48.607	1	259.36	$R_{3}^{(17)}$
45.939	1	$266 \cdot 41$	$R_{1}(18)$
45.674	1	$267 \cdot 11$	$R_{2}(18)$
$45 \cdot 420$	1	$267 \cdot 79$	$R_{3}(18)$
42.678	0	275.05	$R_1 (19)$
42.380	$\hat{1}$	$275 \cdot 84$	$R_{2}(19)$
$42 \cdot 162$	1	$276 \cdot 42$	$R_{3}(19)$
$39 \cdot 205$	Ō	$284 \cdot 26$	$R_1(20)$
$38 \cdot 953$	0	$284 \cdot 93$	\mathbf{R}_{2} (20)
38.749	Öd	$285 \cdot 47$	$R_{3}^{2}(20)$
35.713	$\overline{0d}$	$293 \cdot 52$	$\mathbf{R_1}$ (21)
$35 \cdot 448$	0	$294 \cdot 23$	\mathbf{R}_{2} (21)
$35 \cdot 282$	0	294.67	$R_{3}^{2}(21)$
$32 \cdot 050$	0	$303 \cdot 26$	$\mathbf{R_1}(22)$
$31 \cdot 831$	0	$303 \cdot 84$	$R_{2}(22)$
$31 \cdot 614$	0	$304 \cdot 42$	$\mathbf{R}_{3}(22)$
$28 \cdot 323$	0	$313 \cdot 17$	$\mathbf{R_1}(23)$
28.077	0	$313 \cdot 83$	$R_{2}(23)$
$27 \cdot 923$	0	$314 \cdot 23$	$R_{3}(23)$
$24 \cdot 443$	0	$323 \cdot 51$	$R_1(24)$
$24 \cdot 225$	0	324.09	\mathbf{R}_{2} (24)
$24 \cdot 061$	0	$324 \cdot 53$	$\mathbf{R}_{3}(24)$
$22 \cdot 074*$	5d	329.83	$P_{2}'(14)$?
$21 \cdot 900$	10	330.29	$P_{3}'(14)$?, $P_{1}'(15)$?
$21 \cdot 696$	10	330 · 83	$P_{2}'(15)$?
$21 \cdot 526$	7d	$331 \cdot 29$	$P_{3}'(15)$?
$21 \cdot 224$	6d	332.09	$P_1'(16)$
$20 \cdot 915$	20	332.92	$P_{3}'(16)$
20.828	00 ?	$333 \cdot 15$	
20.617	3	$333 \cdot 71$	$P_{1}'(17)$
$20 \cdot 435$	3	$334 \cdot 20$	$P_{2}'(17)$
20.290	3	$334 \cdot 58$	$P_{s}'(17)$
19.995	4	335.37	$P_{1}'(18)$
19.826	3	$335 \cdot 82$	$P_{2}'(18)$
19.669	3	$336 \cdot 24$	$P_{3}'(18)$

Table IV (continued).

VOL. CCXXVI.-A.

221

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCIES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (I.A.). Int. (Tube). v (Vacuo). Series. $\begin{array}{c} P_2{}'(19)\\ P_3{}'(19)\\ P_1{}'(20)\\ P_2{}'(20)\\ P_3{}'(20)\\ P_1{}'(21)\\ P_2{}'(21)\\ P_3{}'(21)\\ P_1{}'(22)\\ P_3{}'(22)\\ P_3{}'(22)\\ P_1{}'(23)\\ P_2{}'(23)\\ P_3{}'(23)\\ \end{array}$ 6119.042 $\mathbf{2}$ $16337 \cdot 91$ $18 \cdot 924$ $\mathbf{2}$ $338 \cdot 23$ 3 18.366339.723 $18 \cdot 167$ 340.2518.0473 340.573 17.369342.382c $17 \cdot 171$ $342 \cdot 91$ 17.0862c $343 \cdot 14$ $16 \cdot 289$ $\mathbf{2}$ $345 \cdot 27$ 2c16.061 $345 \cdot 88$ $15 \cdot 993$ 2c346.0615.0641c348.54 $14 \cdot 892$ 349.001c14.774 $349 \cdot 32$ 1c $14 \cdot 532$ 0 $349 \cdot 97$ $14 \cdot 326$ 00 350.52 $\begin{array}{c} P_{1}{}' (24) \\ P_{2}{}' (24) \\ P_{3}{}' (24) \\ P_{1}{}' (25) \\ P_{23}{}' (25) \\ R_{2}{}' (5) \\ P_{1}{}' (26) \\ P_{1}{}' (27) \\ P_{23}{}' (26) \\ P_{1}{}' (27) \\ R_{1}{}' (6) \\ R_{2}{}' (6) \\ P_{1}{}' (28) \\ P_{23}{}' (28) \\ R_{3}{}' (6) \\ R_{1}{}' (7) \\ \end{array}$ 13.7501 $352 \cdot 06$ 13.5631c $352 \cdot 56$ $13 \cdot 479$ $352 \cdot 78$ 1c $12 \cdot 289$ 2d $355 \cdot 97$ 12.0483d356.6111.1841d $358 \cdot 93$ 360.0510.7651 10.5052d360.742vd $09 \cdot 088$ $364 \cdot 54$ $08 \cdot 875$ 2vd $365 \cdot 11$ $08 \cdot 448$ 1vd $366 \cdot 25$ $07 \cdot 784$ 368.030d $07 \cdot 338$ $369 \cdot 23$ 1 $07 \cdot 124$ 2d369.80 06.7931 370.690 $371 \cdot 13$ $06 \cdot 626$ $\begin{array}{c} R_{1}'(7) ?\\ R_{2}'(7) ?\\ P_{1}'(29)\\ P_{23}'(29)\\ R_{3}'(7) ?\\ R_{1}'(8)\\ R_{2}'(8)\\ P_{1}'(30)\\ P_{23}'(30), R_{3}'(8)\\ R_{1}'(9)\\ R_{2}'(9)\\ R_{3}'(9)\\ R_{1}'(10) \end{array}$ $05 \cdot 966$ $372 \cdot 90$ 1 $05 \cdot 426$ 00 $374 \cdot 35$ $374 \cdot 84$ $05 \cdot 244$ 1 $05 \cdot 252$ $374 \cdot 82$ 1c $04 \cdot 491$ 1 $376 \cdot 86$ $03 \cdot 941$ 1 378.33 $03 \cdot 432$ 00 ? $379 \cdot 70$ 380.30 $03 \cdot 208$ 4d $02 \cdot 400$ $\mathbf{2}$ $382 \cdot 47$ $\frac{1}{2}$ $383 \cdot 89$ $01 \cdot 871$ $385 \cdot 74$ $01 \cdot 182$ $\begin{array}{c} R_{3}^{\prime} (0) \\ R_{1}^{\prime} (10) \\ R_{2}^{\prime} (10) \\ R_{3}^{\prime} (10) \end{array}$ $\mathbf{2}$ 00.084388.69 $\mathbf{2}$ $389 \cdot 84$ $6099 \cdot 655$ 99.0574d391.450 $391 \cdot 80$ $98 \cdot 927$ R₁' (11) R₂' (11) R₃' (11) R₁' (12) $97 \cdot 801$ $\mathbf{2}$ $394 \cdot 83$ $97 \cdot 356$ 3 396.02 $96 \cdot 812$ 3 3 3 $397 \cdot 48$ $95 \cdot 287$ 401.59 $R_{2}'(12)$ $94 \cdot 916$ $402 \cdot 59$ 3c $403 \cdot 84$ $R_{3}'(12)$ $94 \cdot 448$ $94 \cdot 252$ 2c $404 \cdot 37$ $92 \cdot 801$ 3 $408 \cdot 28$ $R_1'(13)$

Table IV (continued).

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
609 2 ·418	3	16409.31	R ₂ ' (13)
92.002	3	410.43	$R_{3}'(13)$
90.091	4	415.58	$R_{1}'(14)$
89.764	4	416.46	$R_{2}'(14)$
89.369	$\frac{4}{4d}$	417.53	$R_{3}'(14)$
87.380	$\frac{4d}{4d}$	422.89	\mathbf{D}_{3}^{\prime} (15)
87.029		422.89 423.84	$R_1'(15)$
86.695	4		$R_{2}'(15)$
84.475	4	$424 \cdot 74$	$R_{3}'(15)$
	3	430.73	$R_1'(16)$
84·170	3	431.56	$R_{2}'(16)$
83.866	3	$432 \cdot 38$	$R_{3}'(16)$
$81 \cdot 452$	3	438.66	$R_{1}'(17)$
$81 \cdot 218$	4	$439 \cdot 53$	$R_{2'}(17)$
80.959	4	$440 \cdot 23$	$R_{3'}(17)$
78.429	3	447.08	$R_{1}'(18)$
$78 \cdot 154$	3	447.77	$R_{2'}(18)$
77.890	3	$448 \cdot 53$	$R_{3}'(18)$
$75 \cdot 305$	3	$455 \cdot 53$	$R_{1}'(19)$
$74 \cdot 992$	3	$456 \cdot 38$	$R_{2}'(19)$
$74 \cdot 764$	$\begin{vmatrix} 3\\2 \end{vmatrix}$	457.00	$R_{3'}(19)$
$71 \cdot 983$	2 -	$464 \cdot 54$	$R_{1}'(20)$
71.708	2	$465 \cdot 28$	$R_{2}'(20)$
$71 \cdot 510$	2	$465 \cdot 82$	$R_{3'}(20)$
68.620	1	$473 \cdot 66$	$R_{1}'(21)$
68.338	2	$474 \cdot 43$	$R_{2}'(21)$
$68 \cdot 161$	2 2	$474 \cdot 91$	$R_{3}'(21)$
65.099	2	$483 \cdot 22$	$R_{1}'(22)$
$64 \cdot 837$	2	$483 \cdot 94$	$R_{2}'(22)$
$64 \cdot 652$	2	$484 \cdot 44$	$R_{3}'(22)$
$61 \cdot 532$	1	$492 \cdot 92$	$R_{1}'(23)$
$61 \cdot 280$	1	$493 \cdot 61$	$R_{2}'(23)$
$61 \cdot 116$	1	494.06	$R_{3}'(23)$
59.685*	7	$497 \cdot 95$	
$59 \cdot 524$	3	498.39	
$59 \cdot 329$	10d	$498 \cdot 82$	
$59 \cdot 160$	10	$499 \cdot 38$	
58.879	6d	500.15	
58.642	4	500.79	
58.391	$\overline{3}vd$	$501 \cdot 48$	
$58 \cdot 148$	3	$502 \cdot 14$	
58.004	3	502.53	
57.834	5	$502 \cdot 99$	
$57 \cdot 580$	7	503.69	
$57 \cdot 395$	$\dot{7}d$	503.09 504.19	
$57 \cdot 107$		504.97	
56.830	3vc	505.73	
56.701	3vc	506·08	
56.352	3d	506.08 507.03	
$55 \cdot 923$	$\frac{3a}{4d}$	$507 \cdot 03$ $508 \cdot 20$	
55.373			
55·170		509·70	
55.024		510·23	
55.024 54.677		510·65	
54·877	$\frac{1}{2d}$	511.60	
54·030	20	$512 \cdot 47$	

Table IV (continued).

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

223

 2 ± 2

. Table IV (continued).

λ (Ι.Α.).	Int. (Tube).	v (Vacuo).	Series.
6053.806	1	$16513 \cdot 97$	
$53 \cdot 657$	0	514.38	
53.239	1d	$515 \cdot 52$	
$52 \cdot 951$	0vd	$516 \cdot 31$	
53.011	1vd	518.87	
51.712	3vd	519.69	
50.807	00	$522 \cdot 16$	
50.657		$522 \cdot 57$	
50.438		$523 \cdot 27$	
$50 \cdot 294$	10	523.56	
50.079	1	$524 \cdot 15$	
49.889	$\dot{0}c$	$524 \cdot 66$	
49.746	0c	525.05	
49.595	0	$525 \cdot 46$	
49.035 49.011	2c	$525 \cdot 40$ $527 \cdot 06$	
48.745		527.00 527.79	
47.702		530.64	
47.463	$\frac{1}{2}$	$531 \cdot 29$	
47.322		$531 \cdot 29$ $531 \cdot 68$	
46.321	0	$531 \cdot 68$ $534 \cdot 41$	
46.321 46.124	0	$534 \cdot 95$	
45.764	5d	$535 \cdot 95$	
45·336		$537 \cdot 11$	
49.350 44.732	1d	$537 \cdot 11$ $538 \cdot 76$	
43.996	$\frac{1a}{3d}$	540.77	
43·096	1 $3a$ 1	543.24	
43.096 42.837		$543 \cdot 24$ $543 \cdot 95$	
42.590	$0 \\ 0 d$	$543 \cdot 55$ $544 \cdot 62$	
42.090 42.097	$\frac{0a}{2d}$	545.97	
42.097 41.728	1d	546.98	
$41 \cdot 720$ $41 \cdot 292$	$\begin{vmatrix} 1a\\0 \end{vmatrix}$	$540 \cdot 58$ $548 \cdot 18$	
$41 \cdot 292$ $40 \cdot 727$	0	549.73	
40.727 40.565	0	549·13 550·17	
	3	$551 \cdot 19$	
$40 \cdot 193 \\ 39 \cdot 378$	о 1	$553 \cdot 42$	
39.378 39.178	Ŏ.	553.97	
$39 \cdot 178$ $38 \cdot 325$	2	$556 \cdot 31$	
38.030	1	$557 \cdot 12$	
37.601	0	$557 \cdot 12$ 558 · 29	
37.001 37.359	$\frac{0}{2}$	558.96	
36·879		$560 \cdot 28$	
36.879 36.119	1d	562.36	
$35 \cdot 354$	1a 0	$564 \cdot 46$	
	0	564.90	
$35 \cdot 196$ $34 \cdot 955$	0	565·55	
		568.96	
33.716		$569 \cdot 41$	
33.551	0	570.37	
$33 \cdot 201$		570.37 571.01	
32.968	$\frac{1}{3d}$	573.34	
$32 \cdot 119$		575·46	
31.348	1d	$575 \cdot 40$ 575 \cdot 93	
31.179	00	575·95 576·81	
30.857	1	576.81	
30.646	1	011.02	1

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

		· ·	
λ (Ι.Α.).	Int. (Tube).	v (Vacuo).	Series.
6028.317	3d	1658 3.8 0	
$26 \cdot 141$	3	589.78	
$25 \cdot 735$	2	$590 \cdot 90$	
$24 \cdot 944$	2d	$593 \cdot 08$	
$23 \cdot 339$	3	$597 \cdot 50$	
$23 \cdot 244$	2	$597 \cdot 76$	
$22 \cdot 546$	2	$599 \cdot 69$	
20.564	$\cdot \begin{array}{c} 2\\ 2\end{array}$	$605 \cdot 15$	
$20 \cdot 205$	2	$606 \cdot 14$	
$19 \cdot 843$	2c	$607 \cdot 14$	
$19 \cdot 270$	0	$608 \cdot 72$	
$17 \cdot 546$	1	$613 \cdot 48$	
$17 \cdot 237$	2	$614 \cdot 33$	
$16 \cdot 942$	$\frac{2}{2}$	$615 \cdot 15$	
$14 \cdot 545$		$621 \cdot 77$	
$14 \cdot 267$	00	$622 \cdot 54$	
$13 \cdot 954$	3	$623 \cdot 40$	
$13 \cdot 345$	0	$625 \cdot 09$	
$12 \cdot 948$	0	$626 \cdot 18$	
$11 \cdot 374$	1	630.54	
11.077	1	$631 \cdot 36$	
10.821	10	632.07	-
10.663	1	632·50	
10.228	Od	633.71	
$08 \cdot 179$	2	639·38	
$07 \cdot 866 \\ 07 \cdot 677$	$\frac{2}{2}$	$640 \cdot 25$	
04.878*	$\frac{2}{3c}$	640·77	
04.878 04.778	50 70	$648 \cdot 53$ $648 \cdot 81$	D (14) 2
04.612	10	$649 \cdot 26$	P ₁ (14) ?
04.012 04.536	80	649.48	$P_1(15)$?
$04 \cdot 423$	6d?	649.79	$P_1 (16) ?, P_2 (14) ?$
$04 \cdot 289$	10	$650 \cdot 16$	$P_2 (15) ?$
04.089	7	$650 \cdot 72$	$P_1(17), P_2(16), P_3(15)$
03.931	3	$.651 \cdot 15$	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
03.777	7	$651 \cdot 58$	$P_{2}^{13}(10)$
$03 \cdot 595$	1	652.09	$P_1(18), P_3(17)$
$03 \cdot 389$	6	652.66	$P_{2}(18)$
$03 \cdot 230$	10	$653 \cdot 10$	P_1^{-2} (19), P_3 (18)
$02 \cdot 976$	3c	653 •80	$P_{2}^{1}(19)$
$02 \cdot 845$	2vc	$654 \cdot 17$	$P_{3}(19)$
$02 \cdot 416$	1vc	$655 \cdot 36$	$P_{2}(20)$
$02 \cdot 270$	1vc	655 · 7 6	$P_{3}(20)$
$01 \cdot 888$	4	$656 \cdot 82$	$P_{1}(21)$
$01 \cdot 661$	3	$657 \cdot 45$	$P_{2}(21)$
$01 \cdot 487$	2d	$657 \cdot 93$	$P_{3}(21)$
$01 \cdot 097$	3	$659 \cdot 01$	$P_{1}(22)$
$00 \cdot 914$	4d	$659 \cdot 52$	$P_{2}(22)$
00.745	1	$659 \cdot 99$	P.3 (22)
00.154	2	$661 \cdot 63$	$P_{1}(23)$
5999.898	2	$662 \cdot 34$	$P_{2}(23)$
99.747	2	662.76	$P_{3}(23)$
99.143		$664 \cdot 44$	$P_{1}(24)$
98.941	1	665.00	$P_{2}(24)$
$98 \cdot 815$	1 1	$665 \cdot 35$	P ₃ (24)
		0 0	

Table IV (continued).

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

TRANSACTIONS SOCIETY

2 H **3**

Table IV (continued).

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
5 997 • 986	1	16 667.66	P ₁ (25)
$97 \cdot 804$	1	668.16	
97.581	2		$P_{2}(25)$
		668·78	P ₃ (25)
$97 \cdot 336$	1d	$669 \cdot 46$	D (00)
96.800		670.95	$P_{1}(26)$
$96 \cdot 603$	1	671.50	$P_{2}(26)$
$96 \cdot 484$	1	$671 \cdot 83$	P ₃ (26)
$95 \cdot 969$	0	$673 \cdot 26$	
$95 \cdot 409$	1	$674 \cdot 82$	$P_{1}(27)$
$95 \cdot 091$	3d	$675 \cdot 70$	$P_{23}(27)$
$94 \cdot 234$	1	678.09	
$94 \cdot 006$	· 1	$678 \cdot 72$	
$93 \cdot 772$	3d	$679 \cdot 37$	
$92 \cdot 445$	0	683.07	
$92 \cdot 130$	1vd	$683 \cdot 95$	
92.130 91.570	1 d		
		$685 \cdot 50$	
$91 \cdot 154$	1	686·66	
90.935	0	$687 \cdot 27$	
90.082	3vd	$689 \cdot 65$	
$89 \cdot 447$	1	$691 \cdot 42$	
88.800	1d	$693 \cdot 22$	
$88 \cdot 498$	2	$694 \cdot 06$	
88.147	0	$695 \cdot 04$	
$87 \cdot 566$	1	$696 \cdot 66$	
$87 \cdot 192$	$\overline{0}c$	697.70	
86.747	2	698.95	
	2		R ₁ (9)
86·253	$\frac{2}{2}$	700.32	$\mathbf{D}_{1}(0)$
$85 \cdot 647$	4	$702 \cdot 11$	$\mathbf{R}_{2}(9)$
$84 \cdot 939$	3	$703 \cdot 99$	$\mathbf{R}_{3}(9)$
$84 \cdot 092$	2	$706 \cdot 36$	$R_1(10)$
$83 \cdot 640$	2	$707 \cdot 62$	$R_{2}(10)$
$83 \cdot 280$	1d	$708 \cdot 72$	
$82 \cdot 975$	2	$709 \cdot 47$	$R_{3}(10)$
$82 \cdot 003$	2	$712 \cdot 19$	$R_{1}(11)$
$81 \cdot 497$	2	$713 \cdot 60$	$R_{2}(11)$
81.338	ō	714.05	/
80.914	4d	$715 \cdot 23$	$R_{3}(11)$
79.677	$\frac{1}{2}$	$718 \cdot 69$	$R_{1}^{3}(12)$
$79 \cdot 264$	3	719.84	$R_{1}(12)$ $R_{2}(12)$
	3		$R_{2}(12)$ $R_{3}(12)$
78.758		$721 \cdot 26$	
77.388	$\frac{2}{3}$	725.09	$R_1(13)$
$76 \cdot 942$	3	$726 \cdot 34$	$R_{2}(13)$
$76 \cdot 485$	3	$727 \cdot 62$	$R_{3}(13)$
$74 \cdot 900$	3	$732 \cdot 06$	$R_1(14)$
$74 \cdot 540$	4	733.06	R ₂ (14)
$74 \cdot 130$	4	$734 \cdot 21$	$R_{3}(14)$
$72 \cdot 406$	4	$739 \cdot 04$	$R_{1}(15)$
72.005	4	$740 \cdot 17$	$R_{2}^{1}(15)$
$71 \cdot 628$	$\frac{1}{4c}$	$741 \cdot 23$	R_{3}^{2} (15)
69.747	3	746.50	$R_{1}(16)$
$69 \cdot 413$	3	$747 \cdot 44$	$R_{2}(16)$
	3	$747 \cdot 44$ $748 \cdot 38$	
69.077			$R_3 (16) = (17)$
67.058	3	754.05	$R_1(17)$
66.707	3	755.03	$R_{2}(17)$
$66 \cdot 395$	3	$755 \cdot 91$	$R_{3}(17)$

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
$5964 \cdot 228$	3	$16762 \cdot 01$	R ₁ (18)
63.923	3	762.85	$R_{2}(18)$
$63 \cdot 644$		$763 \cdot 64$	$R_{3}(18)$
61.350	3	770·09	$R_{1}(19)$
60.996	3	771.09	
60.757	ن و		$R_2(19)$
	3	771.76	R_{3} (19)
58·707*	8c	777.53	
58.440	40	778.28	D (20)
58.330	10	778.59	R ₁ (20)
$58 \cdot 112$	2vc	$779 \cdot 20$	TD (06)
58.043	40	$779 \cdot 40$	R 2 (20)
$57 \cdot 833$	10d	$779 \cdot 99$	$R_{3}(20)$
$57 \cdot 597$	3	780.65	· · · · · · · · · · · · · · · · · · ·
$57 \cdot 270$	2	$781 \cdot 58$	
$57 \cdot 091$	2 2 2 2 2	$782 \cdot 08$	
56.886	2	$782 \cdot 66$	
56.650		$783 \cdot 32$	
56.363	3vd	$784 \cdot 13$	
56.019	2d	$785 \cdot 10$	
$55 \cdot 611$	1vd	$786 \cdot 25$	
$55 \cdot 300$	2	$787 \cdot 12$	
$55 \cdot 231$	1	$787 \cdot 32$	
$54 \cdot 941$	ů ů	$788 \cdot 14$	R ₁ (21) ?
54.680	3vd	788.87	$R_{1}(21)$?
$54 \cdot 488$	2	789.42	$R_{2}(21)$? $R_{3}(21)$?
53.803			$10_3 (21)$
$53 \cdot 672$	0	$791 \cdot 35$ $791 \cdot 72$	
53.410	0		•
52.969	1d	$792 \cdot 45$	
52.633		793.70	
	0	794.65	
52·063	0	796.27	
51.783	20	797.06	R_1 (22)
$51 \cdot 589$	2	$797 \cdot 60$	R ₂ (22)
$51 \cdot 371$	2	$798 \cdot 21$	R ₃ (22)
$50 \cdot 421$	2d	800.89	
$49 \cdot 262$	0d	$804 \cdot 11$	
49.006	10	$804 \cdot 89$	
$48 \cdot 806$	1c	$805 \cdot 45$	
$48 \cdot 497$	1	$806 \cdot 32$	R ₁ (23)
$48 \cdot 292$	0	806.90	$\mathbf{R}_{2}(23)$
$47 \cdot 605$	1d	$808 \cdot 84$	$\mathbf{R}_{3}(23)$
$46 \cdot 818$	0	811.07	
$45 \cdot 466$	1	$814 \cdot 89$	
$45 \cdot 199$	2d	815.65	
$44 \cdot 119$	$\overline{0d}$	818.70	
$43 \cdot 814$	0d	819.56	
$43 \cdot 237$	1d	$821 \cdot 20$	
$42 \cdot 932$	$\frac{10}{2d}$	$822 \cdot 06$	and the second
42.565	0	$823 \cdot 10$	
$42 \cdot 436$	0	$823 \cdot 10$ $823 \cdot 47$	
41.985	00		
$41 \cdot 841$	00	824.74	
41.680	00	825.15	
$41 \cdot 529$	1c	825.61	
$41 \cdot 131$	10	826.03	

Table IV (continued).

PHILOSOPHICAL THE ROYAL A

λ (Ι.Α.).	Int. (Tube).	ν (Vacuo).	Series.
5940.464	Ovd	16829.05	
$39 \cdot 843$	1vd	830.81	
$39 \cdot 197$	1	$832 \cdot 64$	
$38 \cdot 438$	2c	834.79	
$38 \cdot 205$	2c	$835 \cdot 45$	
$37 \cdot 390$	0	837.76	
$36 \cdot 425$	Od	840.50	· .
$35 \cdot 951$	0	$841 \cdot 84$	
$35 \cdot 425$	0	843.34	
34.779	1	$845 \cdot 17$	
$34 \cdot 530$	1	845.88	
$34 \cdot 120$	1	847.04	
$33 \cdot 628$	0	$848 \cdot 44$	
$32 \cdot 868$	0	850.60	
32.063	0	852.88	
$31 \cdot 332$	0	854.96	
$31 \cdot 114$	Od	855.58	
30.784	0	856.52	
$29 \cdot 617$	1	859.83	•
$29 \cdot 171$	1	861.10	
28.638	1	862.62	
$27 \cdot 301$	1vd	$866 \cdot 42$	
$27 \cdot 019$	2vd	$867 \cdot 22$	
26.494	Od	868.72	
$24 \cdot 702$	1	$873 \cdot 82$	
$24 \cdot 337$	0	$874 \cdot 86$	
$23 \cdot 879$	2	$876 \cdot 17$	
$23 \cdot 679$	0	876.74	
$23 \cdot 417*$	5	$877 \cdot 48$	₹° •

Table IV (continued).

* = Band head.

Notes.

In the λ 6005 band the three accents in the series notation have been omitted as no possibility of confusion exists.

TABLE V.

Wave-length of Head.	Intensity.	Wave Number in Vacuo.
$4382 \cdot 483$ $4371 \cdot 432$ $4365 \cdot 165$	2 4 5	$\begin{array}{c} 22811 \cdot 73 \\ 22869 \cdot 40 \\ 22902 \cdot 25 \end{array}$

Wave-length of Head.	Head Intensity.	Wave-number in Vacuo
6671·31	3	$14971 \cdot 96$
$6599 \cdot 25$	0	$15149 \cdot 06$
6533.68	0	$15301 \cdot 09$
$6480 \cdot 51$	2	$15426 \cdot 63$
6442·35	4	$15518 \cdot 01$
$6424 \cdot 09$	2	$15562 \cdot 12$

Note.—The range of error is large, possibly as much as 0.03, owing to the difficulty of identifying the last line of the head which is often very faint.

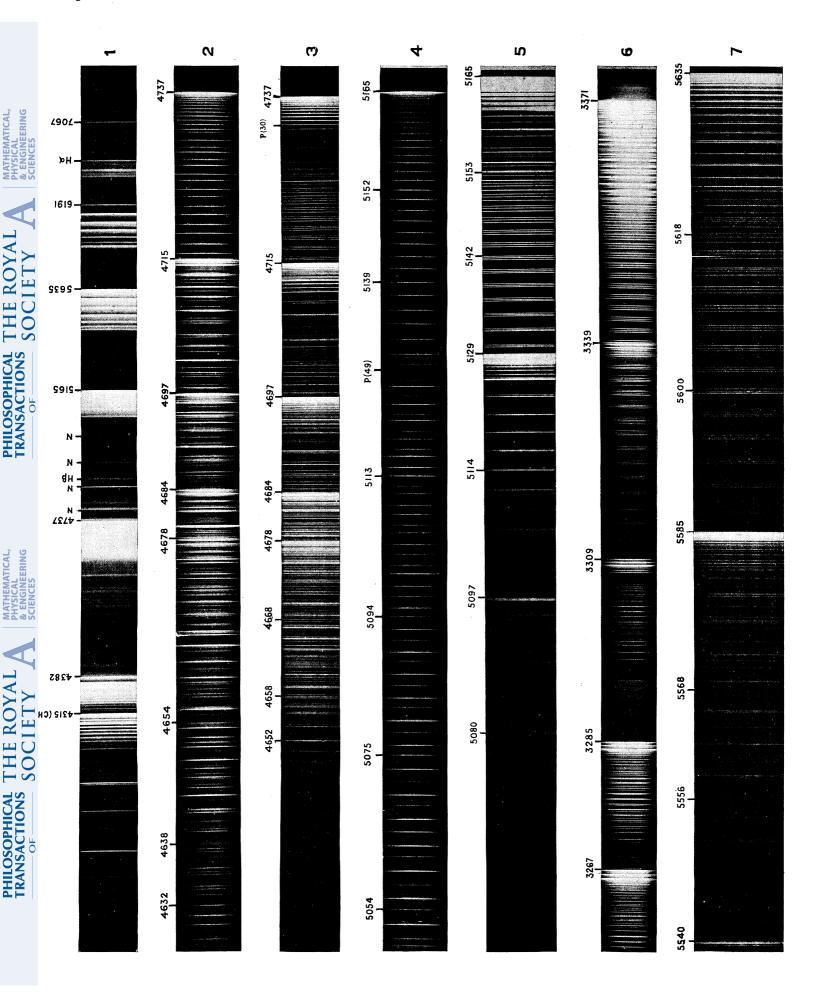
REFERENCES.

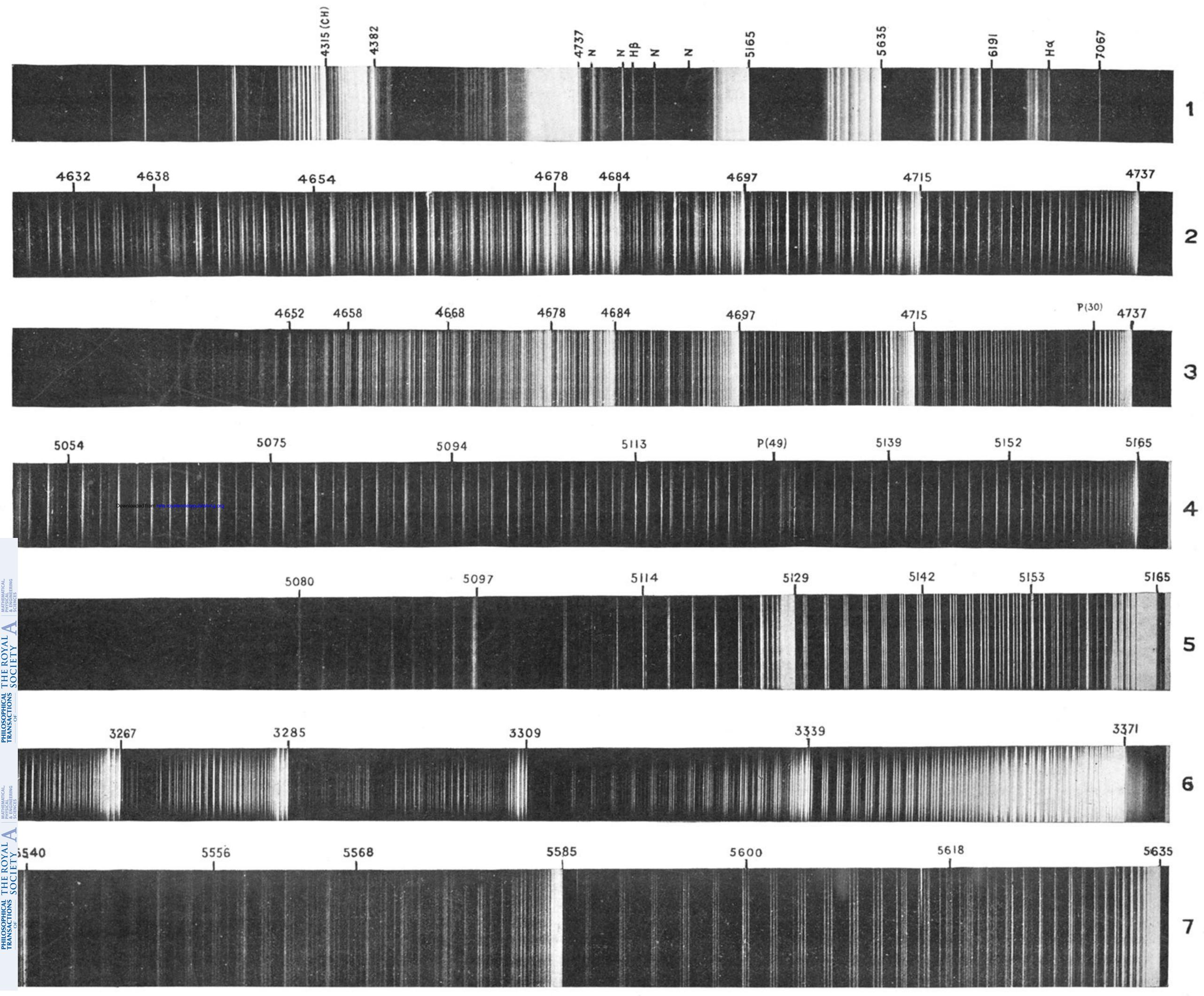
- (1) 'Phil. Mag.,' vol. 28, p. 117 (1914).
- (2) 'Collected Papers in Spectroscopy,' LIVEING and DEWAR.
- (3) 'Roy. Soc. Proc.,' A, vol. 93, p. 254 (1917), and other papers of the series.
- (4) 'Physical Review,' vol. 26, p. 561 (1925).
- (5) JOHNSON : 'Nature,' vol. 116, p. 539 (1925).
- (6) MERTON and JOHNSON: 'Roy. Soc. Proc.,' A, vol. 103, p. 390 (1923).
- (7) KOMP: 'Zs. für wiss. Photogr.,' vol. 10, p. 117 (1912).
- (8) HINDRICHS: 'Dissertation, Bonn' (1904).
- (9) LEINEN : 'Zs. für wiss. Photogr.,' vol. 3, p. 137 (1905).
- (10) 'Ann. der Phys.,' vol. 71, p. 72 (1923).
- (11) ' Zeit. für Phys.,' vol. 31, p. 72 (1923).
- (12) 'Physical Review,' vol. 25, p. 240 (1925).
- (13) ' Roy. Soc. Proc.,' A, vol. 103, p. 323 (1923).
- (14) 'Zeit. für Phys.,' vol. 31, p. 326 (1925).
- (15) ' Nature,' vol. 116, p. 783 (1925).
- (16) SLATER: 'Nature,' vol. 117, p. 555 (1926).
- (17) C. M. BLACKBURN : Unpublished work.
- (18) MULLIKEN: 'Physical Review,' vol. 25, p. 293 (1925).
- (19) STEUBING and TOUSSAINT: 'Zeit. für Phys.,' vol. 21, p. 128 (1924).
- (20) 'Phil. Mag.,' vol. 48, p. 1069 (1924); 'Roy. Soc. Proc.,' A, vol. 106, p. 200 (1924), etc.
- (21) MULLIKEN : 'Nature,' vol. 114, p. 858 (1924).
- (22) HENRI and LANDAU: 'C.R.,' vol. 156, p. 698 (1913).
- (23) SOMMERFELD: 'Atomic Structure and Spectral Lines,' pp. 435-436.
- (24) MULLIKEN: 'Physical Review,' vol. 26, p. 20 (1925).
- (25) KEMBLE: 'Physical Review' (2), vol. 8, p. 689 (1916).

230 R. C. JOHNSON: STRUCTURE AND ORIGIN OF SWAN BAND SPECTRUM, ETC.

- (26) RAFFETY: 'Phil. Mag.,' VI, vol. 32, p. 546 (1916).
- (27) BIRGE : 'Nature,' vol. 114, p. 642 (1924).
- (28) BALY : 'Spectroscopy,' p. 445. SMITHELLS : 'Phil. Mag.,' VI, vol. 1, p. 476 (1901).
- (29) FOWLER: 'M.N.R.A.S.,' vol. 70, p. 484, Plate XIV.
- (30) BIRGE : 'Nature,' vol. 117, p. 229 (1926). JOHNSON : 'Nature,' vol. 117, p. 376 (1926).
- (31) 'Nature,' July 3rd, p. 12 (1926). 'Nature,' July 10th, p. 50 (1926).
- (32) HULTHEN: 'Ann. der Phys.,' vol. 71, p. 41 (1923).
- (33) BALDET: 'C.R.,' vol. 178, p. 1525 (1924).
- (34) WATTS : 'Phil. Mag.,' 6, vol. 28, p. 121.
- (35) KONEN: 'Ann. der Phys.,' vol. 9, p. 742 (1902).
- (36) HORI: 'Nature,' July 3rd, p. 28 (1926).
- (37) FRANCK : 'Transactions of the Faraday Soc.,' Feb., p. 536 (1926).
- (38) BIRGE : 'Nature,' vol. 117, p. 300 (1926).
- (39) BIRGE and SHEA: 'Phys. Rev.,' vol. 25, p. 716 (1925), and March (1926).

DESCRIPTION OF PLATE 4.


- (1) Swan bands as seen under low dispersion. The CH band at $\lambda 4315$ is also present. Enlarged three times. New bands marked.
- (2) High dispersion photograph of the λ 4737 group under arc conditions. The perturbation illustrated in fig. 2 is clearly visible.
- (3) Same as (2), but under tube conditions. The characteristic low temperature conditions will be noted. The P branch can just be distinguished as doublets in (2) and as triplets in (3).
- (4) The λ 5165 group under arc conditions. The perturbation at P (49) is marked ; that at R (48) is just off the plate.
- (5) Same as (4), but under tube conditions.
- (6) A photograph of the (0, 0) band of the Second Positive Nitrogen system for comparison with the above. The remarkable similarity will be observed. The R branch triplets narrowing away from the origin are very conspicuous.
- (7) The λ 5635 and λ 5585 heads (under tube conditions) magnified about three times by enlargement. The original dispersion was about 1.3 Å.U. per millimetre.


MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

PHILOSOPHICAL THE ROYAL A

Downloaded from rsta.royalsocietypublishing.org

Johnson

